
Automatic Extraction of Moving Objects from Image and LIDAR Sequences

Jizhou Yan1,4∗ Dongdong Chen2* Heesoo Myeong3* Takaaki Shiratori4 Yi Ma4,5

1Beihang University 2University of Science and Technology of China
3Seoul National University 4Microsoft Research Asia 5ShanghaiTech University

Abstract

Detecting and segmenting moving objects in an image
sequence has always been a crucial task for many computer
vision applications. This task becomes especially challeng-
ing for real-world image sequences of busy street scenes,
where moving objects are ubiquitous. Although it remains
technologically elusive to develop an effective and scal-
able image-based moving object detection, modern street-
side imagery are often augmented with sparse point clouds
captured with depth sensors. This paper develops a simple
but effective system for moving object detection that fully
harnesses the complementary nature of 2D image and 3D
LIDAR point clouds. We demonstrate how moving objects
can be much more easily and reliably detected with sparse
3D measurements and how such information can signifi-
cantly improve segmentation for moving objects in the im-
age sequences. The results of our system are highly accu-
rate “joint segmentation” of 2D images and 3D points for
all moving objects in street scenes, which can serve many
subsequent tasks such as object removal in images, 3D re-
construction and rendering.

1. Introduction

Recent advances in imaging and sensing technologies

have made high-quality streetside imagery and depth data

widely available. This trend is further fueled with in-

creasing demands of geospatial data and information from

large-scale commercial applications such as Google Map

Streetview. Such data have opened up the possibility of ob-

taining high-quality full 3D reconstruction and visualization

of urban scenes [26, 24]. However the diversity and com-

plexity of street scenes have posed significant challenges for

conventional image-based rendering: there are often many

moving objects such as vehicles and pedestrians, and these

∗This work was done while Jizhou Yan, Dongdong Chen, and Heesoo

Myeong were visiting Microsoft Research Asia.

(a) (b)

(d) (c)

Figure 1. Given (a) a point cloud captured by a LIDAR unit and

(b) image sequences, our method automatically detects (c) points

of moving objects from the point cloud (colors indicate object IDs)

and accordingly segments out (d) the moving objects from images.

independent moving objects hide informative texture such

as restaurant logos and road signs and worsen visual ex-

perience of such map applications. Besides, such moving

objects contain privacy information (e.g., license plates of

moving cars, faces of walking pedestrians), which needs to

be protected through blurring or masking them for privacy

protection. Hence detection of moving objects out of such

streetside images would benefit numerous vision tasks.

In this paper, we tackle the problem of detecting and ex-

tracting moving objects in the streetside image sequences

by exploiting sparse depth information available from a LI-

DAR unit. We employ a typical setting of streetside data

capture that consists of a calibrated multi-camera rig and a

LIDAR unit (which captures surroundings quickly in 3D,

such as Velodyne’s and Z+F’s LIDAR) equipped with GPS

2014 Second International Conference on 3D Vision

978-1-4799-7000-1/14 $31.00 © 2014 IEEE

DOI 10.1109/3DV.2014.94

673

and IMU units, and all data are synchronized with GPS tim-

ing (i.e., all 3D points and images are registered in geospace

and time). We investigate how 3D point clouds and images

should be fused for computationally efficient joint segmen-

tation of moving objects in large-scale urban scenes. Our

method fully exploits the spatial information encoded in the

sparse LIDAR data, as well as the complementary nature

of the 2D images and 3D LIDAR points. It can simultane-

ously identify, track, and extract multiple moving objects in

the scene without any special assumptions about the scene

(e.g., planar background), types of moving objects (e.g., car,
pedestrian), or the camera motion (e.g., pure rotation). Fig-

ure 1 shows the nature of the data and typical results ob-

tained by our method.

The results of our moving object extraction method not

only facilitate urban 3D reconstruction and rendering, but

also can provide useful input for privacy protection. We

demonstrate an application of this work to the problem of

moving object removal by image completion. Image com-

pletion often requires a user to manually specify objects

to be removed, and becomes difficult when the hole re-

gion is large. Our image completion algorithm fully utilizes

the 3D object tracking and pixel-wise image segmentation,

and provides high-quality images that can be used for 2D

panorama and privacy protection.

1.1. Prior Work

Much work has been conducted in computer vision on

foreground object segmentation from images and videos.

One approach is background subtraction [3], which would

require compensation of camera motion. Typically, cam-

era motion is handled by using homographies, with the as-

sumption that camera motion is purely rotational or that the

dominant static objects are planar [30, 31]. Such conditions,

however, do not hold for streetside imagery, where the cam-

era moves freely and the background scene is far from pla-

nar. There are a few structure-from-motion and multiview

stereo based techniques that identify moving objects as out-

liers [28, 25, 33]. However, outlier rejection mechanisms

significantly increase the computational cost (e.g., dozens

of hours for multiview stereo), while our method is signifi-

cantly more efficient (e.g., 25 minutes in total for Figure 1).

Much work also exists for video segmentation without

explicitly inferring 3D information. Many recent tech-

niques consider motion cues and the objectness of regions to

infer the foreground (e.g., [11, 14, 32]). As these methods

are designed to find a single foreground object in a video

sequence, they are not applicable to street scenes which

may contain numerous moving objects and where the im-

age sequences are too sparse to track objects reliably. Image

cosegmentation is also a related technique where the goal is

to extract a common foreground object from a set of im-

ages. Toward this end, many effective methods have been

developed based on the color histogram [21] or shape [29]

of the foreground. To extract multiple foreground objects,

Kim and Xing [9] presented a method that iterates between

color model refinement and region label assignment. How-

ever, such cosegmentation methods tend to be more ef-

fective when there are significant differences in the back-

grounds of the images, which is typically not the case for

image sequences of a street scene whose background can

be very much the same.

Detecting and tracking moving objects (DATMO) from

a 3D point cloud is a central topic in robotics. Methods

in this area basically follow two steps: object segmenta-

tion, and then object tracking. 2D DATMO typically makes

use of a 2D occupancy grid that describes a horizontal slice

of the 3D world [4], and has been applied to moving ob-

ject detection for self-driving cars [2, 22, 13]. However,

the occupancy grid approach is not robust enough for 3D

LIDAR point clouds: as the LIDAR point cloud is fairly

sparse at each time instance, it may capture different parts

of a static object at different instances. Hence, such ap-

proaches often require trained models or domain knowledge

about target objects [1], which often has less generalizabil-

ity than unsupervised methods like ours. For 3D DATMO,

various approaches such as Kalman filtering [23], particle

filtering [15] and iterative closest point (ICP) methods [16]

have been studied to track segmented point clouds for each

object. According to the evaluation conducted by Mor-

ton et al. [17], center-of-mass (COM) tracking outperforms

ICP-based tracking. However, in typical urban scenes, oc-

cluding objects such as trees in front of buildings cause LI-
DAR shadows (Figure 2(a)), where a foreground object di-

vides the object behind it into multiple isolated point clouds.

COM tracking is typically not robust to LIDAR shadows.

There exists some work on fusing LIDAR and image

data to detect pedestrians and/or vehicles [19, 6, 27]. These

approaches first detect moving objects from images and LI-

DAR using supervised object detection methods, and then

integrate the detection results. While these approaches re-

quire training phases of images and point clouds to build

supervised models, our method is fully unsupervised, does

not require any domain knowledge or trained models and

therefore can detect moving objects with various shapes

and appearances. Besides, unlike these previous approaches

which detect moving objects with “bounding boxes” for au-

tonomous navigation purposes, pixel-wise 2D segmentation

is preferred for image quality enhancement applications.

2. Segmentation and Tracking of 3D Objects
In this section, we segment the given sparse LIDAR 3D

point cloud into respective objects in the scene. In par-

ticular, we would like to identify, track, and isolate points

that are associated with moving objects. First, we segment

points into many candidate objects (or object parts) in each

674

LIDAR frame (i.e., a 360◦ sweep). Secondly, size and dis-

tance information from the point cloud and color distribu-

tions from the images are considered together for object

tracking. Finally we separate moving objects from static

objects based on some robust statistics.

2.1. Segmenting Point Cloud into Objects

Object segmentation starts with detecting and removing

ground points. Given the vertical direction computed by

the positioning sensors, we divide the entire 3D world into

vertical bins with a 0.3 m × 0.3 m resolution. Then, we

detect the point that has the minimum height hmin in each

bin, and extract all points whose heights are smaller than

hmin + εh as ground points, where εh = 0.3m.

Now that objects are isolated from the ground, the next

step is to assign an object label to each point. The object la-

bel assignment utilizes a LIDAR grid, which defines a con-

nectivity between each point and its neighbors based on its

capture timing obtained from the GPS and beam index (i.e.,
which laser beam observes the point) [16]. Given a point

cloud P , the label assignment algorithm is conducted in a

flood-fill manner as follows:

Algorithm 1 Assign label to each point in P
SegmentID ⇐ 0
while P contains unlabeled point do

s⇐ unlabeled point in P (random selection)

Ls ⇐ ++ SegmentID
Initialize Queue T
T .push(s)
while T is not empty do

p⇐ T .pop()

for q ∈ neighboring points of p do
if (p,q) satisfy Spatial criterion 1 or 2 then

Lq ⇐ Lp

T .push(q)

end if
end for

end while
end while

The above criteria are defined as follows:

Spatial criterion 1: ‖p− q‖ < dth, (1)

Spatial criterion 2: ‖rp − rq‖ < rth and q ∈ N (p), (2)

where N (p) represents a set of neighbor points of p based

on the LIDAR grid connectivities, rp represents a raw depth

measure for p (i.e., distance between the sensor and p), and

dth and rth are thresholds for point distance and depth dif-

ference, respectively.

The spatial criteria are motivated by LIDAR’s bias in

point density due to depth variation (Figure 2(a)). When

Frame i – 1 Frame i Frame i +1

LIDAR

(b)

LIDAR LIDAR

(a) LIDAR

dense

LIDAR shadow

sparse

Figure 2. (a) Bias in LIDAR’s point capture. The closer objects,

the denser points. And close objects cause LIDAR shadows that

occlude far objects. (b) Occlusion handling. If any objects are not

tracked between frames i − 1 and i because of LIDAR shadow

(e.g., blue pedestrian), the missing objects, as well as tracked ob-

jects (e.g., blue car), are considered in tracking for subsequent

frames with some penalty. In this example, blue objects are con-

sidered in tracking for green objects.

an object is close to the LIDAR unit, a dense point cloud is

captured for the object and Eq. (1) is often satisfied. How-

ever, when an object is far from the LIDAR unit, we have a

much sparser point cloud and Eq. (1) may not be satisfied.

To account for the density bias, Eq. (2) utilizes the LIDAR

grid configuration to group objects at a distance.

2.2. Tracking Objects

Given object point clouds for each LIDAR frame, we

track each object via bipartite graph matching [5, 34]. Let

Ui and Vi+1 be a set of detected objects for the i-th and

(i+ 1)-th LIDAR frames, respectively. Object tracking can

be formulated as computing a set of edges E between Ui
and Vi+1 that minimizes the sum of the edge weights for a

bipartite graph Gi = {Ui,Vi+1, Ei}. This problem can be

solved by the Hungarian method.

To compute an edge weight between objects U ∈ Ui
and V ∈ Vi+1, we define an object dissimilarity ds based

on geometry and appearance information. Specifically, we

consider COM position m, velocity v, size in each dimen-

sion s for geometry, and color histograms C for appearance

computed by projecting all 3D points of the target objects

onto the nearest image and picking up colors:

ds(U, V) = wd exp
(|m′

U −mV |2
)
+

∑
n∈x,y,z

wn
‖snU − snV ‖

snU

− wc1 ln (1−H(CU ,CV) + ε1) , (3)

where m′
U = mU + vU t with the LIDAR frame interval t,

and H ∈ [0, 1] is the Hellinger distance between the color

histograms of U and V [8]. w is a weighting factor for each

dissimilarity term, and ε1 is some small number to avoid

ln(0). To fit the Hungarian problem setting, some dummy

nodes are added such that |Ui| = |Vi+1|. Some large dis-

similarity value is assigned to edges between dummy and

existing nodes. Once all the edge weights are computed,

the Hungarian method is applied to obtain object correspon-

dences between consecutive LIDAR frames.

675

The result of the above bipartite graph matching might

contain some nodes connected with dummy nodes. This

indicates that objects related to such nodes are not tracked

successfully, mainly because of occlusions caused by LI-

DAR shadow (Figure 2 (a)). Defining a set of objects with-

out correspondences as Ũi, we set Ui+1 ← Vi+1 ∪ Ũi,
and Vi+2 as a set of detected objects in the (i + 2)-th
frame, and solve matching of a bipartite graph Gi+1 =
{Ui+1,Vi+2, Ei+1} for next consecutive LIDAR frames

(Figure 2 (b)). For edge weights between Ũi and Vi+2, ds is
multiplied by γΔt for penalty where γ = 1.2 and Δt is the

timing difference between Ũi and Vi+2.
2.3. Detecting Moving Objects

Now that we have trajectories of objects, we use motion

information and color distributions to distinguish moving

and static objects. A key observation here is that, although

the COM position and the speed is noisy for slowly mov-

ing or static objects, the color distributions of static objects

are consistent. In contrast, due to the captured time dif-

ference between image and LIDAR, color distributions of

moving objects will be less consistent than static objects

across time. Therefore, for each object O, we compute

noise-to-velocity ratio, which considers the above observa-

tion about COM motion, and color similarity between i-th
and (i + 1)-th LIDAR frames, as

S(Oi) = wv
|vi − vi+1|
(|vi|+ ε2)

+ wc2(1−H(COi ,COi+1))

(4)

where vi is the COM velocity of O at the i-th frame and ε2
is used to avoid zero-division. Moving objects are detected

if the number of LIDAR frames with low S is greater than

50% of the entire trajectory.

We define the noise-to-velocity ratio (first term of

Eq. (4)) to handle aforementioned noise in the COM mo-

tion with the assumption that a velocity does not change sig-

inificantly between consecutive LIDAR frames. Consider a

measured velocity of an object as vi = ui + ei, where ui
is an actual velocity and ei is noise. When ui close to 0, ei
is dominant in vi and simple thresholding for vi cannot tell
slowly moving objects from static objects. In contrast, this

term is large if ui is almost 0, and becomes smaller quickly

if ui becomes non-zero.

3. Moving Object Segmentation in Images
This section describes segmentation of moving objects

from images that fully utilizes 3D points detected as mov-

ing objects. These 3D points provide a moving object prior
for each moving object, which is considered as constraints

in the graph-cut-based segmentation. After identifying ev-

ery moving object in 3D, we formulate this multi-label ob-

Camera

LIDAR

points before
motion comp.

points after
motion comp.

tC

tL

Figure 3. When the image capture time tC is different from the

point capture time tL (left), the point location is not aligned to the

moving object (white car) in the image (middle). Our approach es-

timates the position of moving object points at tC using the speed

of the moving objects (right).

ject segmentation problem as a set of simple bilayer (fore-

ground/background) segmentation problems.

3.1. Moving Object Prior from LIDAR Points

A moving object prior consists of 2D shape prior, and

color likelihood.

2D Shape Prior. Given a LIDAR frame captured around a

target image and 3D points of a target moving object in the

frame, projection of the 3D points onto the image approxi-

mates the 2D shape of the target moving object. However,

because the target object is moving, even small differences

of timings between point and image capture cause obvious

misalignment between the projected LIDAR points and the

image (Figure 3 left and middle). Hence, we consider the

3D COM trajectory resulting from 3D tracking and approx-

imately estimate the locations of each point at the camera

capture timing.

Based on the LIDAR grid structure and a set M of the

compensated 3D points, we obtain the 2D shape prior for

the target moving object F using the following criterion: If

all the vertices of a cell in the LIDAR grid belong toM, all

the pixels inside the projected cell will be added to F . An

example of F after the motion compensation is highlighted

with green in Figure 3 right. Similarly, we can obtain 2D

shape prior for the background region B, highlighted with

blue in Figure 3 right.

Color Likelihood. We also utilize color likelihood of the

moving object from all images that can observe it. Color

likelihood from multiple images is especially effective for

very small objects such as pedestrians, whose 3D points in

a single frame are sparse and not sufficient to generate a rich

color model. We collectF across multiple views and learn a

Gaussian mixture model (GMM) with five components for

the target moving object. For the background color likeli-

hood, we learn a different GMM with five components from

B in each single image.

676

3.2. Image Segmentation withMoving Object Prior

We apply graph-cut segmentation that takes into account

the multiple moving object priors. For each moving object,

we set an object-specific bounding box, an enlarged rect-

angle to include the whole object. On each bounding box,

we define an energy function E measuring the quality of

bilayer segmentation using the moving object prior, as

E(x) =
∑
pi∈P

Di(xi) +
∑

(i,j)∈N
Vij(xi, xj), (5)

where p is a pixel, xi is a label of pi, P is a set of pixels in

the bounding box, N is a set of adjacent pixel pairs, Di is
a data term for i-th pixel, and Vij is a smoothness term for

i-th and j-th pixels.

Data term. The data term considers both 2D shape prior

and color likelihood of the moving object prior. The func-

tion to assign a label xi as foreground (= 1) for the pixel pi
is

Di(xi = 1) =

⎧⎨
⎩

0 if pi ∈ F
λ if pi ∈ B

f(xi) otherwise

, (6)

where f(xi) is defined as the negative log likeli-

hood of the posterior probability computed by the fore-

ground/background color likelihood. λ is some positive

constant related to how strongly we enforce the label, and

the cost for assigning the background label (= 0) is simply

defined as: Di(xi = 0) = λ−Di(xi = 1).
The foreground moving object region F and the

background static object region B are treated in a way

similar to conventional foreground and background seeds,

respectively. This term enforces pixel memberships to

given single-frame moving or static object shape priors.

Smoothness term. Our smoothness term Vij gives the

penalty of two neighboring pixels pi and pj having different

labels and is defined as

Vij(xi, xj) =

{
0 if xi = xj

exp (−|pb(pi)− pb(pj)|/σ) if xi �= xj
,

(7)

where pb(pi) returns the output of a boundary detector [12]

at i-th pixel pi and σ is the standard deviation of pb.

4. Experimental Results
To test and evaluate the proposed moving object detec-

tion algorithm, we use two different datasets. Dataset 1 con-

tains about 5 million LIDAR points and 120 images with

about 6M pixels from a 80 m run, and Dataset 2 contains

about 13 million LIDAR points and 120 images with about

6M pixels from another 80 m run. More results can be

found in the supplementary material.

Table 1. Comparisons of 3D moving object detection accuracy

between ours and Azim et al. [1], regarding (a) the number of

detected objects for each category and (b) statistical analysis of

results. GT, F, P and N indicate “ground truth”, “fully detected

(more than 80% out of ground truth points detected),” “partially

detected (more than 30%)”, and “not detected”, respectively.

(a) Detection results for each moving object category
Dataset 1 Dataset 2

GT F P N GT F P N

PC

Ped. 33 25 6 2 83 53 16 14

Bus 1 0 1 0 5 1 2 2

Car 1 1 0 0 24 21 2 1

Bike 0 N/A N/A N/A 5 5 0 0

PG

Ped. 33 23 4 6 83 46 17 20

Bus 1 0 1 0 5 0 1 4

Car 1 1 0 0 24 18 4 2

Bike 0 N/A N/A N/A 5 4 1 0

AS

Ped. 33 18 6 9 83 42 12 29

Bus 1 0 0 1 5 0 3 2

Car 1 1 0 0 24 14 2 8

Bike 0 N/A N/A N/A 5 2 1 2

AC

Ped. 33 21 5 7 83 44 15 24

Bus 1 0 1 0 5 1 3 1

Car 1 1 0 0 24 15 5 4

Bike 0 N/A N/A N/A 5 4 1 0

(b) Statistical analysis of detection accuracy
Dataset 1 Dataset 2

Precision Recall F1 score Precision Recall F1 score

PC 98.4% 96.4% 97.4% 98.8% 87.6% 92.9%

PG 97.6% 93.8% 95.7% 98.1% 82.3% 89.5%

AS 96.2% 79.3% 86.9% 89.9% 61.7% 73.2%

AU 81.6% 81.3% 81.4% 73.9% 66.3% 69.9%

4.1. Results of 3D Segmentation and Tracking

For evaluations of 3D moving object detection, we man-

ually counted and categorized moving objects and then

computed the total number of moving object points. We

observed 35 moving objects in Dataset 1 and 117 moving

objects in Dataset 2 in total with various shapes.

We compare the proposed method (i.e., consider both ge-

ometry and color, denoted as PC) with the proposed method

without color (i.e., consider only geometry, denoted as PG1)

to validate the effectiveness of color histograms for mov-

ing object detection. We further compare two versions of

Azim et al.’s method [1] that utilizes a 3D occupancy grid:

their original version supervised with object classification

(AS) and an unsupervised version without the classification

(AU). Table 1 summarizes the results and comparisons of

our 3D moving object detection for the two datasets. PC

outperforms the other three methods with reasonable accu-

racy. The comparison between PC and PG shows that color

information improves the detection accuracy. Although the

comparison between AS and AU indicates that considering

domain knowledge or trained model further enables better

detection, our unsupervised method outperforms the occu-

pancy grid-based approach significantly.

1PG can be considered as a COM-based method with size information.

677

Figure 5. Results of 3D moving object detection for the large dataset (800 m run). The colors indicate moving object IDs.

Figure 4. Results of 3D moving object detection for Datasets 1

(left) and 2 (right). Top: raw point clouds without ground points,

middle: results of tracking (colors indicate object IDs), and bot-

tom: results of moving object detection (red, white, green, and

blue points are true positive, true negative, false positive, and false

negative detected by our method, respectively).

Figure 4 shows results of moving object segmentation

and tracking for Datasets 1 and 2. The long trajectories rep-

resent cars and motor bikes, and short trajectories represent

pedestrians. The computational times of PC, PG, AS and

AU for Dataset 1 were six minutes, five minutes, three min-

utes and three minutes, respectively, and those for Dataset

2 were eight minutes, seven minutes, six minutes and six

minutes, respectively. Our method is as efficient as existing

work and yields better results.

Figure 5 shows the result for a large-scale dataset (800

m run). This dataset contains numerous, various vehicles

and pedestrians with occlusions, which were successfully

handled by our method. The computational cost for this

dataset was 21 minutes.

4.2. Results of 2D Segmentation

To test and validate our 2D segmentation, we employed

interactive segmentation with user strokes to obtain the

ground truth moving object regions in each image, and

evaluated our method using the popular normalized overlap

Table 2. Comparisons of 2D segmentation in Datasets 1 and 2.

Object Joulin et al. GrabCut Ours

Pedestrian 1 (small) 12.0% 13.7% 49.1%
Pedestrian 2 (small) 4.8% 51.0% 66.6%
Pedestrian 3 (med.) 3.6% 45.9% 79.3%
Pedestrian 4 (med.) 9.0% 27.1% 66.6%

Vehicle 1 30.8% 85.4% 91.5%
Vehicle 2 25.3% 85.3% 86.0%

scores for measuring the similarity between the segmenta-

tion result and the presented ground truth [10]. Table 2 and

Figure 6 show quantitative and qualitative comparisons of

our method with the cosegmentation method by Joulin et
al. [7] and GrabCut [20], both of which are automatic seg-

mentation methods, for randomly selected several objects

with various size and motion. For GrabCut, we consid-

ered projected moving LIDAR points as foreground seeds

and bouding boxes as target image regions. For Joulin et
al.’s method, we provided all bounding boxes of each mov-

ing object to their cosegmentation method. The comparison

with GrabCut shows the necessity of integrating multiple

2D shape prior of the same moving object, and the compar-

ison with Joulin et al. shows that conventional cosegmenta-

tion work has difficulty for complex streetside scenery even

with proper bounding boxes. Other results of the multiple

moving object segmentation are shown in Figure 7. Our

image segmentation took 20 minutes and 31 minutes for all

120 images in Datasets 1 and 2, respectively.

4.3. Failure Cases

Although we obtained reasonable results for moving ob-

ject segmentation in 3D and 2D, we observed a few fail-

ure cases (Figure 8). These failures are mainly caused by

the sparsity of LIDAR data: sparse point clouds lead to

a lack of shape details in both 3D (Figure 8 left) and 2D

(Figure 8 middle), and result in failure of 3D tracking and

insufficient 2D shape prior for image segmentation. Fig-

ure 8 right shows another failure case in image segmenta-

tion caused by similar colors of a moving object and back-

ground. While we need to consider per-frame point clouds

for moving objects because of their motion, we can consider

multiple frames and accordingly much denser point clouds

for static objects. Simultaneous segmentation of both static

and moving objects might mitigate the issues.

678

(a) Joulin et al. (b) GrabCut (c) Ours (d) GT

Figure 6. Qualitative comparisons for Pedestrian 3 (medium). GT

indicates ground truth.

Figure 7. Results of multiple moving object segmentation.

Figure 8. Failure cases for 3D tracking (left) and image segmen-

tation (middle and right). Green points in the middle are LIDAR

data for the bus.

4.4. Applications

The detected moving objects and their 2D/3D segmen-

tation results can serve many important vision tasks. In

this section, we showcase two immediate applications that

would benefit 3D modeling and visualization of street

scenes as well as editing street view images for removing

moving objects.

Moving Object Removal for LIDAR Point Cloud Ren-
dering. Typical usage of LIDAR points and images of street

scenes is 3D urban rendering. Because of the sparsity of LI-

DAR points, we apply Delaunay triangulation to the point

cloud to generate meshes, and resample the meshes to pro-

duce denser point clouds. Then, we select images based on

visibility computed from the triangle normals and the view-

Figure 9. Rendering results from raw LIDAR and image data (left)

and after moving object removal (right).

Figure 10. Original consecutive images from Dataset 1 (top) and

results of image completion (bottom). The rightmost column

shows a close-up of the marked region.

ing direction of the image, and assign color to each point

from the projected pixel in the image.

Figure 9 shows the rendering results of the original

point cloud in Dataset 1 and the point cloud after moving

object detection and removal. Obviously, the visual quality

of the original point cloud is compromised by moving

objects which occlude background, and yet our method can

effectively remove those 3D points as well as avoid using

pixels associated with those points for rendering.

Moving Object Removal from Images. This application

demonstrates image completion after moving object detec-

tion by utilizing the fact that we have some 3D informa-

tion as well as a sequence of images, not all of which are

occluded by the moving objects. This aims at improving

visual quality of panorama images and privacy protection.

For each pixel on a moving object, we first estimate its

depth from the 3D point cloud after moving object removal.

We then project this recovered 3D point to neighboring im-

ages. This point will inherit the color of pixels from images

that satisfy the following conditions: 1) that the locations of

the projected points are not inside the moving object regions

in those images, and 2) that the camera centers are closest

to that of the target image. Since colors may be transferred

from different images, their intensity levels may vary. We

compute gradients within each set of pixels whose colors

are from the same source image, and apply Poisson image

blending [18].

Figure 10 shows the result of this image completion

method. Notice that the text “TAXI” on the road and the

front part of the parked white car are completed effectively

in the leftmost image. The dark regions on the ground are

679

caused by shadow cast by the moving car. Since shadow

cannot be detected by LIDAR, we cannot consider it in the

2D segmentation and Poisson blending. We leave shadow

handling for future research.

5. Conclusion
In this paper, we developed a system for moving object

detection, tracking and removal that fully utilizes the com-

plementary nature of 2D images and 3D point clouds. We

additionally exploit the spatial and temporal information en-

coded in the sparse LIDAR data. With our moving object

detection and removal, the applications of 3D point cloud

rendering and image completion were demonstrated.

References
[1] A. Azim and O. Aycard. Detection, classification and track-

ing of moving objects in a 3d environment. In Proc. IEEE
Intelligent Vehicles Symp., 2012. 2, 5

[2] C. Urmson et al. Autonomous driving in urban environ-

ments: Boss and the urban challenge. J. of Field Robotics,
25(8):425–466, June 2008. 2

[3] M. Cristani, M. Farenzena, D. Bloisi, and V. Murino. Back-

ground subtraction for automated multisensor surveillance:

A comprehensive review. EURASIP J. on Advances in Sig-
nal Processing, 2010(1):343057, 2010. 2

[4] A. Elfes. Using occupancy grids for mobile robot perception

and navigation. IEEE Computer, 22(6):46–57, 1989. 2

[5] C. Huang, B. Wu, and R. Nevatia. Robust object tracking

by hierarchical association of detection responses. In ECCV,
pages 788–801. 2008. 3

[6] L. Huang and M. Barth. Tightly-coupled lidar and computer

vision integration for vehicle detection. In Proc. IEEE Intel-
ligent Vehicles Symp., 2009. 2

[7] A. Joulin, F. Bach, and J. Ponce. Multi-class cosegmentation.

In Proc. CVPR, 2012. 6

[8] T. Kailath. The divergence and bhattacharyya distance mea-

sures in signal selection. Communication Technology, IEEE
Transactions on, 15(1):52–60, 1967. 3

[9] G. Kim and E. P. Xing. On multiple foreground cosegmen-

tation. In Proc. CVPR, pages 837–844, 2012. 2

[10] A. Kowdle, S. N. Sinha, and R. Szeliski. Multiple view ob-

ject cosegmentation using appearance and stereo cues. In

Proc. ECCV, 2012. 6

[11] Y. J. Lee, J. Kim, and K. Grauman. Key-segments for video

object segmentation. In Proc. ICCV, 2011. 2

[12] J. J. Lim, C. L. Zitnick, and P. Dollar. Sketch tokens: A

learned mid-level representation for contour and object de-

tection. In CVPR, 2013. 5

[13] M. Montemerlo et al. Junior: The Stanford entry in the urban

challenge. J. of Field Robotics, 25(9), Sept. 2008. 2

[14] T. Ma and L. J. Latecki. Maximum weight cliques with

mutex constraints for video object segmentation. In Proc.
CVPR, pages 670–677, 2012. 2

[15] I. Miller, M. Campbell, and D. Huttenlocher. Efficient un-

biased tracking of multiple dynamic obstacles under large

viewpoint changes. IEEE TRO, 27(1):29–46, 2011. 2

[16] F. Moosmann and T. Fraichard. Motion estimation from

range images in dynamic outdoor scenes. In Proc. ICRA,
pages 142–147, 2010. 2, 3

[17] P. Morton, B. Douillard, and J. Underwood. An evaluation

of dynamic object tracking with 3D LIDAR. In Proc. Aus-
tralasian Conf. on Robotics and Automation, 2011. 2

[18] P. Pérez, M. Gangnet, and A. Blake. Poisson image editing.

ACM TOG, 22(3):313–318, 2003. 7

[19] C. Premebida, G. Monteiro, U. Nunes, and P. Peixoto. A

lidar and vision-based approach for pedestrian and vehicle

detection and tracking. In Proc. IEEE Intelligent Transporta-
tion Systems Conf., 2007. 2

[20] C. Rother, V. Kolmogorov, and A. Blake. GrabCut: Inter-

active foreground extraction using iterated graph cuts. ACM
TOG, 23(3):309–314, 2004. 6

[21] C. Rother, V. Kolmogorov, T. Minka, and A. Blake. Coseg-

mentation of image pairs by histogram matching – incorpo-

rating a global constraint into MRFs. In CVPR, 2006. 2

[22] S. Kammel et al. Team AnnieWAY’s autonomous system

for the 2007 DARPA urban challenge. J. of Field Robotics,
25(9):615–639, Sept. 2008. 2

[23] J. Shackleton, B. V. Voorst, and J. Hesch. Tracking people

with a 360-degree LIDAR. In Proc. Advanced Video and
Signal Based Surveillance, pages 420–426, 2010. 2

[24] Q. Shan, R. Adams, B. Curless, Y. Furukawa, and S. Seitz.

The visual turing test for scene reconstruction. In Proc. 3DV,
2013. 1

[25] Y. Sheikh, O. Javed, and T. Kanade. Background subtraction

for freely moving cameras. In Proc. ICCV, 2009. 2

[26] N. Snavely, S. Seitz, and R. Szeliski. Photo Tourism: Ex-

ploring photo collections in 3D. ACM TOG, 25(3), 2006.

1

[27] L. Spinello, R. Triebel, and R. Siegwart. Multiclass multi-

modal detection and tracking in urban environments. IJRR,
29(12):1498–1515, 2010. 2

[28] C. Strecha, R. Fransens, and L. V. Gool. Combined depth

and outlier estimation in multi-view stereo. In Proc. CVPR,
pages 2394 – 2401, 2006. 2

[29] D. Weiss and B. Taskar. SCALPEL: Segmentation cascades

with localized priors and efficient learning. In Proc. CVPR,
pages 2035–2042, 2013. 2

[30] C. Yuan, G. Medioni, J. Kang, and I. Cohen. Detecting

motion regions in the presence of a strong parallax from a

moving camera by multiview geometric constraints. IEEE
TPAMI, 29(9):1627–1641, 2007. 2

[31] J. Yuxin, T. Linmi, D. Hujun, N. Rao, and G. Xu. A unified

algebraic approach to 2-d and 3-d motion segmentation. In

Proc. ICIP, pages 1572–1575, 2008. 2

[32] D. Zhang, O. Javed, and M. Shah. Video object segmentation

through spatially accurate and temporally dense extraction of

primary object regions. In Proc. CVPR, 2013. 2

[33] G. Zhang, J. Jia, W. Hua, and H. Bao. Robust bilayer

segmentation and motion/depth estimation with a handheld

camera. IEEE TPAMI, 33(3):603–617, 2011. 2

[34] L. Zhang, Y. Li, and R. Nevatia. Global data association for

multi-object tracking using network flows. In CVPR, pages
1–8, 2008. 3

680

