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Figure 1: Colorization results of black-and-white photographs. Our method provides the capability of generating multiple plausible coloriza-
tions by giving different references. Input images (from left to right, top to bottom): Leroy Skalstad/pixabay, Peter van der Sluijs/wikimedia,
Bollywood Hungama/wikimedia, Lorri Lang/pixabay, Aamir Mohd Khan/pixabay, Official White House Photographer/wikimedia, Anony-
mous/wikimedia and K. Krallis/wikimedia.

Abstract

We propose the first deep learning approach for exemplar-based
local colorization. Given a reference color image, our convolu-
tional neural network directly maps a grayscale image to an out-
put colorized image. Rather than using hand-crafted rules as in
traditional exemplar-based methods, our end-to-end colorization
network learns how to select, propagate, and predict colors from
the large-scale data. The approach performs robustly and general-
izes well even when using reference images that are unrelated to
the input grayscale image. More importantly, as opposed to other
learning-based colorization methods, our network allows the user
to achieve customizable results by simply feeding different refer-
ences. In order to further reduce manual effort in selecting the ref-
erences, the system automatically recommends references with our
proposed image retrieval algorithm, which considers both seman-
tic and luminance information. The colorization can be performed
fully automatically by simply picking the top reference suggestion.
Our approach is validated through a user study and favorable quan-
titative comparisons to the-state-of-the-art methods. Furthermore,
our approach can be naturally extended to video colorization. Our
code and models will be freely available for public use.

1 Introduction

The aim of image colorization is to add colors to a gray image such
that the colorized image is perceptually meaningful and visually ap-
pealing. The problem is ill-conditioned and inherently ambiguous
since there are potentially many colors that can be assigned to the
gray pixels of an input image (e.g., leaves may be colored in green,
yellow, or brown). Hence, there is no unique correct solution and
human intervention often plays an important role in the colorization
process.

Manual information to guide the colorization is generally provided
in one of two forms: user-guided scribbles or a sample reference

∗Supplemental material: http://www.dongdongchen.bid/
supp/deep_exam_colorization/index.html
†∗ indicates equal contribution. This work was done when Mingming

He and Dongdong Chen were interns at Microsoft Research Asia.

image. In the first paradigm [Levin et al. 2004; Yatziv and Sapiro
2006; Huang et al. 2005; Luan et al. 2007; Qu et al. 2006], the
manual effort involved in placing the scribbles and the palette of
colors must be chosen carefully in order to achieve a convincing
result. This often requires both experience and a good sense of
aesthetics, thus making it challenging for an untrained user. In the
second paradigm [Welsh et al. 2002; Irony et al. 2005; Tai et al.
2005; Charpiat et al. 2008; Liu et al. 2008; Chia et al. 2011; Gupta
et al. 2012; Bugeau et al. 2014], a color reference image similar to
the grayscale image is given to facilitate the process. First, corre-
spondence is established, and then colors are propagated from the
most reliable correspondences. However, the quality of the result
depends heavily on the choice of reference. Intensity disparities
between the reference and the target caused by lighting, viewpoint,
and content dissimilarity can mislead the colorization algorithm.

A more reliable solution is to leverage a huge reference image
database to search for the most similar image patch/pixel for col-
orization. Recently, deep learning techniques have achieved im-
pressive results in modeling large-scale data. Image colorization
is formulated as a regression problem and deep neural networks
are used to directly solve it [Cheng et al. 2015; Deshpande et al.
2015; Larsson et al. 2016; Iizuka et al. 2016; Zhang et al. 2016;
Isola et al. 2017; Zhang et al. 2017]. These methods can colorize
a new photo fully automatically without requiring any scribbles or
reference. Unfortunately, none of these methods allow multi-modal
colorization [Charpiat et al. 2008]. By learning from the data, their
models mainly use the dominant colors they have learned, hindering
any kind of user controllability. Another drawback is that it must
be trained on a very large reference image database containing all
potential objects.

More recent works attempt to achieve the best of both worlds: con-
trollability from interaction and robustness from learning. Zhang
et al. [2017] and Sangkloy et al. [2016] add manual hints in the
form of color points or strokes to the deep neural network in or-
der to suggest possibly desired colors for the scribbles provided by
users. This greatly facilitates traditional scribble-based interactions
and achieves impressive results with more natural colors learned
from the large-scale data. However, the scribbles are still essential
for achieving high quality results, so a certain amount of trial-and-
error is still involved.
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Figure 2: Our goal is to selectively propagate the correct reference
colors (indicated by the dots) for the relevant patches/pixels, and
predict natural colors learned from the large-scale data when no
appropriate matching region is available in the reference (indicated
by the region outlined in red). Input images (from left to right):
Julian Fong/flickr and Ernest McGray, Jr/flickr.

In this paper, we suggest another type of hybrid solution. We pro-
pose the first deep learning approach for exemplar-based local col-
orization. Compared with existing colorization networks [Cheng
et al. 2015; Iizuka et al. 2016; Zhang et al. 2016], our network
allows control over the output colorization by simply choosing dif-
ferent references. As shown in Fig. 1, the reference can be similar
or dissimilar to the target, but we can always obtain plausible col-
ors in the results, which are visually faithful to the references and
perceptually meaningful.

To achieve this goal, we present the first convolutional neural net-
work (CNN) to directly select, propagate and predict colors from an
aligned reference for a gray-scale image. Our approach is qualita-
tively superior to existing exemplar-based methods. The success
comes from two novel sub-networks in our exemplar-based col-
orization framework.

First, the Similarity sub-net is a pre-processing step which provides
the input of the end-to-end colorization network. It measures the
semantic similarity between the reference and the target using a
VGG-19 network pre-trained on the gray-scale image object recog-
nition task. It provides a more robust and reliable similarity metric
to varying semantic image appearances than previous metrics based
on low-level features.

Then, the Colorization sub-net provides a more general coloriza-
tion solution for either similar or dissimilar patch/pixel pairs. It
employs multi-task learning to train two different branches, which
share the same network and weight but are associated with two dif-
ferent loss functions: 1) Chrominance loss, which encourages the
network to selectively propagate the correct reference colors for
relevant patch/pixel, satisfying chrominance consistency; 2) Per-
ceptual loss, which enforces a close match between the result and
the true color image of high-level feature representations. This en-
sures a proper colorization learned from the large-scale data even
in cases where there is no appropriate matching region in the refer-
ence (see Fig. 2). Therefore, our method can greatly loosen restric-
tive requirements on a good reference selection as required in other
exemplar-based methods.

To guide the user towards efficient reference selection, the system
recommends the most likely reference based on a proposed im-
age retrieval algorithm. It leverages both high-level semantic in-
formation and low-level luminance statistics to search for the most
similar images in the ImageNet dataset [Russakovsky et al. 2015].
With the help of this recommendation, our approach can serve as
a fully automatic colorization system. The experiments demon-
strate that our automatic colorization outperforms existing auto-
matic methods quantitatively and qualitatively, and even produces
comparably high quality results to the-state-of-the-art interactive
methods [Zhang et al. 2017; Sangkloy et al. 2016]. Our approach
can also be extended to video colorization.

Our contributions are as follows: (1) The first deep learning ap-

proach for exemplar-based colorization, which allows controllabil-
ity and is robust to reference selection. (2) A novel end-to-end
double-branch network architecture which jointly learns faithful lo-
cal colorization to a meaningful reference and plausible color pre-
diction when a reliable reference is unavailable. (3) A reference im-
age retrieval algorithm for reference recommendation, with which
we can also attain a fully automatic colorization. (4) A method
capable of transferability to unnatural images, even though the net-
work is trained purely on a natural image dataset. (5) An extension
to video colorization.

2 Related work

Next, we provide an overview of the major related works of each of
the major algorithm categories.

2.1 Scribble-based colorization

These methods focus on propagating local user hints, for instance,
color points or strokes, to the entire gray-scale image. The color
propagation is based on some low-level similarity metrics. The pi-
oneering work of Levin et al. [2004] assumed that adjacent pixels
with similar luminance should have similar color, and then solved a
Markov Random Field for propagating sparse scribble colors. Fur-
ther advances extended similarity to textures [Qu et al. 2006; Luan
et al. 2007], intrinsic distance [Yatziv and Sapiro 2006], and ex-
ploited edges to reduce color bleeding [Huang et al. 2005]. The
common drawback of such methods is intensive manual work and
professional skills for providing good scribbles.

2.2 Example-based colorization

These methods provide a more intuitive way to reduce extensive
user effort by feeding a very similar reference to the input grayscale
image. The earliest work [Welsh et al. 2002] transferred colors by
matching global color statistics, similar to Reinhard et al. [2001].
The approach yielded unsatisfactory results in many cases since it
ignored spatial pixel information. For more accurate local transfer,
different correspondence techniques are considered, including seg-
mented region level [Irony et al. 2005; Tai et al. 2005; Charpiat et al.
2008], super-pixel level [Gupta et al. 2012; Chia et al. 2011], and
pixel level [Liu et al. 2008; Bugeau et al. 2014]. However, finding
low-level feature correspondences (e.g., SIFT, Gabor wavelet) with
hand-crafted similarity metrics is susceptible to error in situations
with significant intensity and content variation. Recently two works
utilize deep features extracted from a pre-trained VGG-19 network
for reliable matching between images that are semantically-related
but visually different, and then leverage it to style transfer [Liao
et al. 2017] and color transfer [He et al. 2017]. However, all of these
exemplar-based methods have to rely on finding a good reference,
which is still an obstacle for users, even when some semi-automatic
retrieval methods [Liu et al. 2008; Chia et al. 2011] are used. By
contrast, our approach is robust to any given reference thanks to the
capability of our deep network to learn natural color distributions
from large-scale image data.

2.3 Learning-based colorization

Several techniques rely entirely on learning to produce the coloriza-
tion result. Deshpande et al. [2015] defined colorization as a lin-
ear system and learned its parameters. Cheng et al. [2015] con-
catenated several pre-defined features and fed them into a three-
layer fully connected neural network. Recently, some end-to-end
learning approaches [Larsson et al. 2016; Iizuka et al. 2016; Zhang
et al. 2016; Isola et al. 2017] leveraged CNN to automatically ex-
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Figure 3: System pipeline (inference stage). The system consists of two sub-networks. The Similarity sub-net works as a pre-processing
step using Input 1 which includes two luminance channels TL and RL from the target and the reference respectively, bidirectional mapping
functions φT↔R and two chrominance channels Rab from the reference. It computes the bidirectional similarity maps simT↔R and the
aligned reference chrominance R′ab, which, along with TL, form Input 2 for the Colorization sub-net. The Colorization sub-net is an end-to-
end CNN to predict the chrominance channels of the target, which are then combined with TL to generate the final colorized result PLab.

tract features and predict the color result. The key difference in
those networks is the loss function (e.g., image reconstruction L2

loss [Iizuka et al. 2016], classification loss [Larsson et al. 2016;
Zhang et al. 2016], and L1 +GAN loss for considering the multi-
modal colorization [Isola et al. 2017]). All of these networks are
learned from large-scale data and do not require any user interven-
tion. However, they only produce a single plausible result for each
input, even though colorization is intrinsically an ill-posed problem
with multi-modal uncertainty [Charpiat et al. 2008].

2.4 Hybrid colorization

To achieve desirable color results, Zhang et al. [2017] and Sangk-
loy et al. [2016] proposed a hybrid framework that inherits the con-
trollability from scribble-based methods and the robustness from
learning-based methods. Zhang et al. [2017] uses provided color
points while Sangkloy et al. [2016] adopts strokes. Instead, we
incorporate the reference rather than user-guided points or strokes
into the colorization network, since we believe that giving a similar
color example is a more intuitive way for untrained users. Further-
more, the reference selection can be achieved automatically using
our image retrieval system.

3 Exemplar-based Colorization Network

Our goal is to colorize a target grayscale image based on a color
reference image. More specifically, we aim to apply a reference
color to the target where there is semantically-related content, and
fall back to a plausible colorization for the objects or regions with
no related content in the reference. To achieve this goal, we address
two major challenges.

First, it is difficult to measure the semantic relationship between
the reference and the target, especially given that the reference is
in color while the target is a grayscale image. To solve this prob-
lem, we use a gray-VGG-19, trained on image classification tasks
only using the luminance channel to extract their own features, and
compute their feature’s differences.

Second, it is still challenging to select reference colors and prop-
agate them properly by defining hand-crafted rules based on the
similarity metrics. Instead, we propose an end-to-end network to
learn selection and propagation simultaneously. Oftentimes both
steps are not enough to recover all colors, especially when the ref-
erence is not very related to the target. To address this issue, our
network would instead predict the dominant colors for misaligned
objects from the large-scale data.

Fig. 3 illustrates the system pipeline. Our system uses the CIE Lab
color space, which is perceptually linear. Thus, each image can be

separated into a luminance channel L and two chrominance chan-
nels a and b. The input of our system includes a grayscale target im-
age TL ∈ RH×W×1, a color reference image RLab ∈ RH×W×3,
and the bidirectional mapping functions between them. The bidi-
rectional mapping function is a spatial warping function defined
with bidirectional correspondences. It returns the transformed pixel
location given a source location ”p”. The two functions are respec-
tively denoted as φT→R (mapping pixels from T to R) and φR→T
(mapping pixels from R to T ), where H and W are the height and
width of the input images. For simplicity, we assume the two in-
put images are of the same dimensions, although this is not neces-
sary in practice. Our network consists of two sub-networks. The
Similarity sub-net computes the semantic similarities between the
reference and the target, and outputs bidirectional similarity maps
simT↔R. The Colorization sub-net takes simT↔R, TL and R′ab
as the input, and outputs the predicted ab channels of the target
Pab ∈ RH×W×2, which are then combined with TL to get the col-
orized result PLab (PL = TL). Details of the two sub-networks are
introduced in the following sections.

3.1 Similarity Sub-Network

Before calculating pixel-level similarity, the two input images TL
and RLab have to be aligned. The bidirectional mapping functions
φR→T and φT→R can be calculated with a dense correspondence
algorithm, such as SIFTFlow [Liu et al. 2011], Daisy Flow [Tola
et al. 2010] or DeepFlow [Weinzaepfel et al. 2013]. In our work,
we adopt the latest advanced technique called Deep Image Anal-
ogy [Liao et al. 2017] for dense matching, since it is capable of
matching images that are visually different but semantically related.

Our work is inspired by recent observations that CNNs trained on
image recognition tasks are capable of encoding a full spectrum of
features, from low-level textures to high-level semantics. It pro-
vides a robust and reliable similarity metric to variant image ap-
pearances (caused by variant lightings, times, viewpoints, and even
slightly different categories), which may be challenging for low-
level feature metrics (e.g., intensity, SIFT, Gabor wavelet) used in
many works [Welsh et al. 2002; Liu et al. 2008; Charpiat et al. 2008;
Tai et al. 2005].

We take the intermediate output of VGG-19 as our feature
representation. Certainly, other recognition networks, such as
GoogleNet [Szegedy et al. 2015] or ResNet [He et al. 2015] can
also be used. The original VGG-19 is trained on color images and
has a degraded accuracy of recognizing grayscale images, as shown
in Table 1. To reduce the performance gap between color images
and their gray versions, we train a gray-VGG-19 only using the lu-
minance channel of an image. It increases the top-5 accuracy from
83.63% to 89.39%, and approaches that of the original VGG-19
(91.24%) evaluated on color images.



Table 1: Classification accuracies of original and our fine-tuned
VGG-19 calculated on ImageNet validation dataset.

Top-5 Class Top-1 Class
Acc(%) Acc(%)

Ori VGG-19 tested on color image 91.24 73.10
Ori VGG-19 tested on gray image 83.63 61.14
Our VGG-19 tested on gray image 89.39 70.05
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Figure 4: Two branches training of Colorization sub-net. Both
branches take nearly the same Input 2 except for the concatenated
chrominance channel. The aligned ground truth chrominance T ′ab
is used for the Chrominance branch to compute the chrominance
loss Lchrom, while the aligned reference chrominance R′ab is used
in the Perceptual branch to compute the perceptual loss Lperc.

We then feed the two luminance channels TL andRL into our gray-
VGG-19 respectively, and obtain their five-level feature map pyra-
mids (i = 1...5). The feature map of each level i is extracted
from the relu{i} 1 layer. Note that the features have progres-
sively coarser spatial resolution with increasing levels. We up-
sample all feature maps to the same spatial resolution of the input
images and denote the upsampled feature maps of TL and RL as
{F iTL

}i=1,...,5 and {F iRL
}i=1,...,5 respectively. Bidirectional simi-

larity maps simi
T→R and simi

R→T are computed between F iT and
F iR at each pixel p:

simi
T→R(p) = d(F iT (p), F

i
R(φT→R(p)) ,

simi
R→T (p) = d(F iT (φR→T (φT→R(p))), F

i
R(φT→R(p))) .

(1)

As mentioned in Liao et al. [2017], cosine distance performs better
in measuring feature similarity since it is more robust to appearance
variances between image pairs. Thus, our similarity metric d(x, y)
between two deep features is defined as their cosine similarity:

d(x, y) =
xT y

|x||y| . (2)

The forward similarity map simT→R reflects the matching confi-
dence from TL to RL while the backward similarity map simR→T
measures the matching accuracy in the reverse direction. We use
simT↔R to denote both.

3.2 Colorization Sub-Network

We design an end-to-end CNN C to learn selection, propagation
and prediction of colors simultaneously. As shown on the right of
Fig. 3, C takes a thirteen-channel map as the input, which concate-
nates the gray target TL, aligned reference with chrominance chan-
nels only R′ab(p) = Rab(φT→R(p)), and bidirectional similarity
maps simT↔R ). It also predicts ab channels of the target image
Pab. Next, we describe the loss function, network architecture and
training strategy of the network.

3.2.1 Loss

Usually, the objective of colorization is to encourage the output Pab
to be as close as possible to the ground truth Tab, the original ab
channels of a color image TLab in the training dataset. However
this is not true in exemplar-based colorization, because the coloriza-
tion Pab should allow customization withR′ab (e.g., a flower can be
colorized in either red, yellow, purple depending on the reference).
Thus, it is not accurate to directly penalize a measure of the differ-
ence between Pab and Tab, as in other colorization networks (e.g.,
using L2 loss [Cheng et al. 2015; Iizuka et al. 2016], L1 loss [Isola
et al. 2017; Zhang et al. 2017], or classification loss [Larsson et al.
2016; Zhang et al. 2016]).

Instead, our objective function is designed to consider two desider-
ata. First, we prefer reliable reference colors to be applied in the
output, thus making it faithful to the reference. Second, we encour-
age the colorization to be natural, even when no reliable reference
color is available.

To achieve both goals, we propose a multi-task network, which in-
volves two branches, Chrominance branch and Perceptual branch.
Both branches share the same network C and weight θ but are asso-
ciated with their own input and loss functions, as shown in Fig. 4.
A parameter α is used to dictate the relative weight between the two
branches.

In the Chrominance branch, the network learns to selectively prop-
agate the correct reference colors, which depends on how well the
target TL and the reference RL are matched. However, training
such a network is not easy: 1) on the one hand, the network can-
not be trained directly withR′ab, the reference chrominance warped
on the target, because the corresponding ground truth colorization is
unknown; 2) while on the other hand, the network cannot be trained
using the ground truth target chrominance Tab as a reference, be-
cause that would essentially be providing the network with the an-
swer it is supposed to predict. Thus, we leverage the bidirectional
mapping functions to reconstruct a ”fake” reference T ′ab from the
ground truth chrominance, i.e., T ′ab(p) = Tab(φR→T (φT→R(p)).
T ′ab replaces R′ab in the training stage with the underlying hypothe-
sis that correct color samples in T ′ab are very likely to lie in the same
positions as correct color samples in R′ab, since both are warped
with φT→R.

To train the chrominance branch, both TL and T ′ab are fed to the
network, yielding the result PTab:

PTab = C(TL, simT↔R, T
′
ab; θ) . (3)

Here, PTab is colorized with the guidance of T ′ab, and should recover
the ground truth Tab if the network selects the correct color samples
and propagates them properly. The smooth L1 distance is evaluated
at each pixel p and integrated over the entire image to evaluate the
Chrominance loss:

Lchrom(PTab) =
∑

p
smooth L1(P

T
ab(p), Tab(p)) (4)

where smooth L1(x, y) = 1
2
(x − y)2, if |x − y| < 1,

smooth L1(x, y) = |x − y| − 1
2

, otherwise. We take the smooth
L1 loss as the distance metric to avoid the averaging solution in the
ambiguous colorization problem [Zhang et al. 2017].

Using the Chrominance branch only works for reliable color sam-
ples in R′ab but may fail when the reference is dissimilar to parts
of the image. To allow the network to predict perceptually plau-
sible colors even without a proper reference, we add a Perceptual
branch. In this branch, we take the reference R′ab and the target
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Figure 5: Visualization of Perceptual loss. Both colorized results
have the sameL2 chrominance (ab channels) distance to the ground
truth, but the unnatural green face (right) has a much larger Per-
ceptual loss than a more plausible skin color (left). Input image:
Zhang et al. [2017].

TL as the network input during training. Then, we generate the
predicted chrominance Pab:

Pab = C(TL, simT↔R, R
′
ab; θ) . (5)

In this branch, we minimize Perceptual loss [Johnson et al. 2016]
instead. Formally:

Lperc(Pab) =
∑

p
||FP (p)− FT (p)||2 (6)

where FP represents the feature maps extracted from the original
VGG19 relu5 1 layer for PLab, and FT is the same for TLab. Per-
ceptual loss measures the semantic differences caused by unnatural
colorization and is robust to appearance differences caused by two
plausible colors, as shown in Fig. 5. We also did some exploration
using cosine distance but found L2 distance generated superior re-
sults. A similar loss is widely used in other tasks, like style trans-
fer [Chen et al. 2017a; Chen et al. 2018], photo-realistic image syn-
thesis [Chen and Koltun 2017], and super resolution [Sajjadi et al.
2017].

Our network C, parameterized by θ, learns to minimize both loss
functions (Equation (4) and (6)) across a large dataset:

θ∗ = argmin
θ

(Lchrom(PTab) + αLperc(Pab)), (7)

where α is empirically set to 0.005 to balance both branches.

3.2.2 Architecture

The sub-network adopts a U-net encoder-decoder structure with
some skip connections between the lower layers and symmetric
higher layers. We empirically chose the U-net architecture be-
cause of its effectiveness, as evidenced in many image generation
tasks [Badrinarayanan et al. 2015; Yu and Koltun 2015; Zhang
et al. 2017]. Specifically, our network consists of 10 convolutional
blocks. Each convolutional block contains 2 ∼ 3 conv-relu pairs,
followed by a batch normalization layer [Ioffe and Szegedy 2015]
with the exception of the last block. The feature maps in the first 4
convolutional blocks are progressively halved spatially while dou-
bling the feature channel number. To aggregate multi-scale contex-
tual information without losing resolution (as in Yu et al. [2015],
Zhang et al. [2017] and Fan et al. [2018]), dilated convolution layers
with a factor of 2 are used in the 5th and 6th convolutional blocks.
In the last 4 convolutional blocks, feature maps are progressively
doubled spatially while halving the feature channel number. All
down-sampling layers use convolution with stride 2, while all up-
sampling layers use deconvolution with stride 2. Symmetric skip
connections are added between the outputs of 1st and 10th, 2nd
and 9th, and 3rd and 8th blocks, respectively. Finally, a convolu-
tion layer with a kernel size 1 × 1 is added after the 10th block to
predict the output Pab. The final layer is a tanh layer (also used
in Radford et al. [2015] and Chen et al. chen2017stylebank), which
makes Pab within a meaningful bound.

3.2.3 Dataset

We generate a training dataset based on ImageNet dataset [Rus-
sakovsky et al. 2015] by sampling approximately 700,000 image
pairs from 7 popular categories: animals (15%), plants (15%), peo-
ple (20%), scenery (25%), food (5%), transportation (15%) and
artifacts (5%), involving 700 classes out of the total 1,000 classes
due to the cost of generating training data. To let the network be
robust to any reference, we sample image pairs with different ex-
tents of similarity. Specifically, 45% of image pairs belong to Top-5
similarity (selected by our recommendation algorithm described in
Section 4) in the same class. Another 45% are randomly sampled
within the same class. The remaining 10% have less similarity as
they are randomly sampled from different classes but within the
same category. In the training stage, we randomly switch the role
of the two images for each pair to augment data. In other words, the
target and the reference can be switched as two variant pairs during
training. All images are scaled with the shortest edge of 256 pixels.

3.2.4 Training

Our network is trained using the Adam optimizer [Kingma and Ba
2014] with a batch size of 256. For every iteration, within the
batch, the first 50% of data (128) go through the Chrominance
branch using use T ′ab as a reference and the remaining 50% (128)
go through the Perceptual branch using R′ab. The two branches re-
spectively use corresponding losses. When updating the Chromi-
nance branch, only Chrominance loss is used for gradient back
propagation. When updating the Perceptual branch, only Percep-
tual loss is used for gradient back propagation. The initial learning
rate is set to 0.0001 and decays by 0.1 every 3 epochs. By default,
we train the whole network with 10 epochs. The whole training
procedure takes around 2 days on 8 x Titan XP GPUs.

4 Color Reference Recommendation

As discussed earlier, our network is robust to reference selection,
and provides user control for the colorization. To aid users in find-
ing good references, we propose a novel image retrieval algorithm
that automatically recommends good references to the user. Alter-
natively, the approach yields a fully automatic system by directly
using the Top-1 candidate.

The ideal reference is expected to match the target image in both
semantic content and photometric luminance. The purpose of in-
corporating the luminance term is to avoid any unnatural compo-
sition of luminance and chrominance. In other words, combining
the reference chrominance with the target luminance may produce
visually unfaithful colors to the reference. Therefore, we desire the
reference’s luminance to be as close as possible to the target’s.

To measure semantic similarity, we adopt the intermediate features
of a pre-trained image classification network as descriptors, which
have been widely used in recent image retrieval works [Krizhevsky
et al. 2012; Babenko et al. 2014; Gong et al. 2014; Babenko and
Lempitsky 2015; Razavian et al. 2016; Tolias et al. 2015]

We propose an effective and efficient image retrieval algorithm.
The system overview is shown in Fig. 6. We feed the luminance
channel of each image from our training dataset (see Section 3.2.3)
to our pre-trained gray-VGG-19 (in Section 3.1), and get its feature
F 5 from the last convolutional layer relu5 4 and F 6 from the first
fully-connected layer fc6. These features are pre-computed and
stored in the database for the latter query. We also feed the query
image (i.e., the target gray image) to the gray-VGG-19 network,
and get its corresponding features F 5

T , F
6
T . We then proceed with

two ranking steps described next.



Classifier Global 
Ranking

Local 
Ranking

…
Query ~1000 ‘Lorikeet’ images Top  200 Top  1

……
Figure 6: Color reference recommendation pipeline. Input images: ImageNet dataset.

4.0.1 Global Ranking

Through gray-VGG-19, we can also get the recognized Top-1 class
ID for the query image TL. According to the class ID, we nar-
row down the search domain to all the images (∼ 1, 000 images)
within the same class. Here, we want to further filter out dissimi-
lar candidates by comparing fc features between the query and all
candidates. Even within the same class, the candidate could have a
context that is irrelevant to the query. For example, the query could
be ”a cat running on grass”, but the candidate could be ”a cat sit-
ting inside the house”. We would like the semantic content in the
two images to be as similar as possible however. To achieve this,
for each candidate image Ri(i = 1, 2, 3, ...) in this class, we di-
rectly compute the cosine similarity (in Equation (2)) between F 6

T

and F 6
Ri

as the global score and rank all candidates by their scores.

4.0.2 Local Ranking

The global ranking provides us the top-N (we set N = 200) can-
didates Ri. As we know, fc features fail to provide more accurate
information about the object since it ignores the spatial information.
For this purpose, we further prune these candidates by conducting
a local ranking on the remaining N images. The local similarity
score consists of both semantic and luminance terms.

For each image pair {TL, Ri}, at each point p in F 5
T , we find its

nearest neighbor q in F 5
Ri

by minimizing the cosine distance be-
tween F 5

T (p) and F 5
Ri

(q), namely q = NN(p). Then, the seman-
tic term is defined as the cosine similarity d(·) (see Equation (2))
between two feature vectors F 5

T (p) and F 5
Ri

(q).

The luminance term measures the similarity of luminance statistics
between two local windows corresponding to p and q respectively.
We evenly split image TL into a 2D grid with each grid having
16× 16 resolution. Each grid in the image TL indeed corresponds
to a point in its feature mapF 5

T , since it undergoes 4 down-sampling
layers. CT (p) is denoted as the grid cell in the image correspond-
ing to the point p in F 5

T . Likewise, CRi(q) from RL corresponds
the point q in F 5

Ri
. The function dH(·) measures the correlation

coefficient between luminance histograms of CT (p) and CRi(q).

The local similarity score is summarized as:

score(T,Ri) =
∑
p

(d(F 5
T (p), F

5
Ri

(q))+βdH(CT (p), CRi(q))),

(8)
where β determines the relative importance between the two terms
(empirically set to 0.25). This similarity score is computed for each
pair {TL, Ri}(i = 1, 2, 3, ...). According to all local scores, we re-
rank all retained candidates and retrieve the top selections.

We compress neural features with the common PCA-based com-
pression [Babenko et al. 2014] to accelerate the search. The chan-
nels of feature fc6 are compressed from 4, 096 to 128 and the chan-
nels of features relu5 4 are reduced from 512 to 64 with practically
negligible loss. After these dimensionality reductions, our refer-
ence retrieval can run in real-time.

5 Discussion

In this section, we analyze and demonstrate the capabilities of our
colorization network through ablation studies.

5.1 What does the Colorization sub-net learn?

The Colorization sub-net C learns how to select, propagate, and
predict colors based on the target and the reference. As discussed
earlier, it is an end-to-end network that involves two branches, each
playing a distinct role. At first, we want to understand the behavior
of the network using just the Chrominance branch during learning.
For this purpose, we only train the Chrominance branch of C by
minimizing the Chrominance loss (in Equation (4)), and evaluate
it on one example to intuitively understand its operation (Fig. 7).
By comparing the chrominance of the predicted result (4th col-
umn) with the chrominance of the aligned reference (3rd column),
we notice that they have consistent colors in most regions (e.g.,
”blue” sky, ”white” plane and ”green” lawn). That indicates that
our Chrominance branch picks color samples from the reference
and propagates them to the entire image to achieve a smooth col-
orization.

To learn which color samples are selected by the network, we com-
pute the chrominance difference between the predicted result and
the aligned reference in the 5th column (”blue” denotes nearly no
difference while ”red” denotes a noticeable difference). Colors of
the points with smaller errors are more likely to be selected by the
network and then retained in the final result.

”How does the network infer good samples?” or ”Can it be di-
rectly inferred from the matching between images?” To answer
these questions, we compare the difference map (6th column) with
the averaged five-levels matching errors 1 − simT→R (7th col-
umn) and 1 − simR→T (8th columns). On the one hand, we can
see that the matching errors are essentially consistent with the dif-
ference. This demonstrates that our network can learn a good sam-
pling based on the matching quality, which serves as a key ”hint”
to determine appropriate locations. On the other hand, we find that
the network does not always select points with smaller matching er-
rors, as evidenced by a significant number of inconsistent samples.
Without similarity maps, the Colorization sub-net can hardly infer
the matching accuracy between the aligned reference and the input.
It will also increase ambiguity of the color prediction. Thus, adap-
tive selection according to similarities may be infeasible through
an intuitive heuristic. However, by using the large-scale data, our
network can more robustly learn this mechanism directly.

To understand the role of the Perceptual branch, we train it by
solely minimizing the Perceptual loss (in Equation (6)). We show
an example in Fig. 8. For this case, some regions do not have a good
match to the reference (i.e., the right ”trunk” object). By using the
Chrominance branch only, we attain results with incorrect colors
for trunk objects (4th column). However, the Perceptual branch is
capable of addressing this problem (8th column). It predicts the
single and natural brown color for the trunk, since the majority of
trunks in the training data are brown. Thus, the prediction of the
Perceptual branch is purely based on the dominant color of objects



Target Reference Aligned reference Predicted result Chrominance difference Matching error Matching error
TL R R′ TL

⊕
R′ab |Pab −R′ab| 1− simT→R 1− simR→T

Figure 7: Visualization of color selection in the Chrominance branch. The points with smaller difference between the predicted colorization
Pab and aligned reference colorR′ab are most likely to be selected by the network and maintained in the final results. Note how inconsistencies
between the similarity maps and the true color difference make it difficult to determine good points by the hand-crafted rules. Input images:
ImageNet dataset.

Target Reference Aligned reference Chrominance Two branches Two branches Two branches Perceptual
branch only (α = 0.003) (α = 0.005) (α = 0.01) branch only

Figure 8: Comparison of results from the training with different branch configurations. Input images (from left to right, top to bottom):
Tabitha Mort/pexels, Steve Morgan/wikimedia and Anonymous/pxhere.

Target Aligned reference Samples Samples
(threshold) (cross-check)

Reference Our result Zhang et al. [2017] Zhang et al. [2017]
(threshold) (cross-check)

Figure 9: Comparison of our end-to-end network with the alter-
native of selecting color samples with manual thresholds or cross-
check matching, and then colorizing with Zhang et al. [2017]. Input
images: ImageNet dataset.

from the large-scale data, and independent of the reference. As we
can see in the 8th column, it predicts the same colors even for dif-
ferent references.

To enjoy the advantages of both branches, we adopt a multi-task
training strategy to train both branches simultaneously. The term
α is used as their relative weight. The double-branch results in
5th − 7th columns of Fig. 8 explicitly indicate that our network
learns to adaptively fuse the predictions of both branches: select-
ing and propagating the reference color at well-matched regions,
but generalizing to the natural color learnt from large-scale data for
mismatched or unrelated regions. The relative weight α tunes the
preference towards each branch. Evaluated on the ImageNet vali-
dation data, we set α = 0.005 as the default in our experiments.

5.2 Why is end-to-end learning crucial?

Our Colorization sub-net learns three key components in coloriza-
tion: color sample selection, color propagation, and dominant color
prediction. To our knowledge, there is no other work that learns
three steps simultaneously through a neural network.

An alternative is to simply sequentially process the three steps. In
our study, we adopt the state-of-the-art color propagation and pre-
diction method [Zhang et al. 2017]. Such a learning-based method
significantly advances previous optimization methods [Levin et al.
2004], especially when given few user points. We try two color
selection strategies: 1) Threshold: select color points with the
top 10% averaged bidirectional similarity score; 2) Cross-check
in matching: select color points where the bidirectional mapping
satisfies φT→R(φR→T )(p) = p. Once the points are obtained,
we directly feed them to the pre-trained color propagation net-
work [Zhang et al. 2017]. We show the two predicted colorization
results in 3rd and 4th columns of Fig. 9 respectively.

As we can see, the colorization does not work well and introduces
many noticeable color artifacts. One possible reason is that the net-
work [Zhang et al. 2017] is not trained on the type of input samples,
but rather on user-guided points instead. Therefore, such a sequen-
tial learning would always result in a sub-optimal solution.

Moreover, the study also shows the difficulty in determining hand-
crafted rules for point selections, as mentioned in Section 5.1. It
is hard to eliminate all improper color samples through heuristics.
The pre-trained network will also propagate wrong samples, thus
causing such artifacts. On the contrary, our end-to-end learning
approach avoids these pitfalls by jointly learning selection, prop-
agation and prediction, resulting in a single network that directly
optimizes for the quality of the final colorization.

5.3 Robustness

A significant advantage of our network is the robustness to ref-
erence selection when compared with traditional exemplar-based
colorization. It can provide plausible colors whether the reference



Target & Ground truth Manually selected Top-1 Intra-class Intra-category Inter-category

Figure 10: Our method predicts plausible colorization with different references: manually selected, automatically recommended, randomly
selected in the same class of the target, randomly selected in the same category, and randomly selected out of the category. Input images:
ImageNet dataset except the two manual reference photos by Andreas Mortonus/flickr and Indi Samarajiva/flickr.

Target & SIFTFlow DaisyFlow DeepFlow Deep Analogy
Reference

Figure 11: Our method works with different dense matching algo-
rithms. The first row shows the target and the aligned references
by different matching algorithms: SIFTFlow ([Liu et al. 2011]),
DaisyFlow ([Tola et al. 2010]), DeepFlow ([Weinzaepfel et al.
2013]), and Deep Image Analogy ([Liao et al. 2017]). The second
row shows the reference and final colorized results using different
aligned references. Input images: ImageNet dataset.

is related or unrelated to the target. Fig. 10 shows how well our
method works on varying references with different levels of simi-
larity to the target image. As we can see, the colorization result is
naturally more faithful to the reference when the reference is more
similar to the target in their semantic content. In other situations,
the result will be degenerated to a conservative colorization. This
is due to the Perceptual branch, which predicts the dominant col-
ors from large-scale data. This behavior is similar to the existing
learning-based approaches (e.g., [Iizuka et al. 2016; Larsson et al.
2016; Zhang et al. 2016]).

In addition, our network is also robust to different types of dense
matching algorithms, as shown in Fig. 11. Note that our network
is only trained using Deep Image Analogy [Liao et al. 2017] as the
default matching approach, and the network is tested with various
matching algorithms. We can also observe that the result is more
faithful to the reference color at well-aligned regions; while the re-
sult is degenerated to the dominant colors at misaligned regions.

Note that better alignment can improve the results of objects which
can find semantic correspondences in the reference, but cannot help
the colorization of objects which do not exist in the reference.

5.4 Transferability

Previous learning-based methods are data-driven and thus only able
to colorize images that share common properties with those in the
training set. Since their networks are trained on natural images, like
the ImageNet dataset, they would fail to provide satisfactory colors
for unseen images, for example, human-created images (e.g., paint-
ings or cartoons). Their results may degrade to no colorization (1st,
3rd columns in Fig. 12) or introduce notable color artifacts (2nd
column). By contrast, our method benefits from the reference and
successfully works in both cases. Although our network does not
see such types of images in training, with the Chrominance branch
it learns to predict colors based on correlations of image pairs. The
learnt ability is common to unseen objects.

6 Comparison and Results

In this section, we first report our performance and user study re-
sults. Then we qualitatively and quantitatively compare our method
to previous techniques, including learning-based, exemplar-based,
and interactive-based methods. Finally, we validate our method on
legacy grayscale images and videos.

6.1 Performance

Our core algorithm is developed in CUDA. All of our experiments
are conducted on a PC with an Intel E5 2.6GHz CPU and an
NVIDIA Titan XP GPU. The total runtime for a 256 × 256 image
is approximately 0.166s, including 0.016s for reference recommen-
dation, 0.1s for similarity measurement and 0.05s for colorization.



Target Iizuka et al. [2016] Zhang et al. [2016] Larsson et al. [2016] Ours Reference

Figure 12: Transferability comparison of colorization networks trained on ImageNet. Input images (from left to right, top to bottom):
Charpiat et al. [2008], Snow64/wikimedia and Ryo Taka/pixabay.

Table 2: Colorization results compared with learning-based meth-
ods on 10, 000 images from the ImageNet validation set. The sec-
ond and third columns are the Top-5 and Top-1 classification accu-
racies after colorization using the VGG19-BN and VGG16 network.
The last column is the PSNR between the colorized result and the
ground truth.

VGG19-BN/ VGG19-BN/
VGG16 VGG16

Top-5 Class Top-1 Class
Acc(%) Acc(%) PSNR(dB)

Ground truth (color) 90.35/89.99 71.12 /71.25 NA
Ground truth (gray) 84.2/81.35 61.5/57.39 23.28
Iizuka et al. [2016] 85.53/84.12 63.42/61.61 24.92
Zhang et al. [2016] 84.28/83.12 60.97/60.25 22.43
Larsson et al. [2016] 85.42/83.93 63.56/61.36 25.50
Ours 85.94/84.79 65.1/63.73 22.92

6.2 Comparison with Exemplar-based methods

To compare with existing exemplar-based methods [Welsh et al.
2002; Irony et al. 2005; Bugeau et al. 2014; Gupta et al. 2012], we
run our algorithm on 35 pairs collected from their papers. Fig. 13
shows several representatives and the complete set can be found in
the supplemental material. To provide a fair comparison, we di-
rectly borrow their results from their publications or run their pub-
licly available code.

In these examples, the content and object layouts of the refer-
ence are very similar to the target (i.e., no irrelevant objects or
great intensity disparities). This is a strict requirement of exist-
ing exemplar-based methods, whose colorization relies solely on
low-level features and is not learned from large-scale data. On the
contrary, our algorithm is more general and has no such restrictive
requirement. Even on these very related image pairs, our method
shows better visual quality than previous techniques. The success
comes from the sophisticated mechanism of color sample selec-
tion and propagation that are jointly learned from data rather than
through heuristics.

6.3 Comparison with learning-based methods

We compare our method with the-state-of-the-art learning-based
colorization networks [Larsson et al. 2016; Zhang et al. 2016;
Iizuka et al. 2016] by evaluating on 10, 000 images in the valida-
tion set of ImageNet (same as Larsson et al. [2016]). Our method
is trained on a subset of the ImageNet training set, as described in
Section 3.2. We tested our automatic solution by taking the Top-
1 recommendation as the reference (Sec. 4). To be fair, we use
author-released models trained on the ImageNet dataset as well to
run their methods.

We show a quantitative comparison of colorized results in Table 2
on two metrics: PSNR relative to the ground truth and classifica-
tion accuracy. Our results have a lower PSNR score (22.9178dB)
than Larsson et al. [2016] and Iizuka et al. [2016], because PSNR
overly penalizes a plausible but different colorization result. A cor-
rect colorization faithful to the reference may even achieve a lower
PSNR than a conservative colorization, such as predicting gray for
every pixel (24.9214dB). On the contrary, our method outperforms
all other methods on image recognition accuracy rates when send-
ing the colorized results into VGG19 or VGG16 pre-trained on im-
age recognition task. It indicates that our colorized results seem to
be more natural than others, which can be recognizable as well as
the true color image.

A qualitative comparison for selected representative cases is shown
in Fig. 14. For a full set of 200 images randomly drawn from 1, 000
cases, please refer to our supplemental material. From this compar-
ison, an apparent difference is that our results are more saturated
and colorful when compared to Iizuka et al. [2016] and Larsson et
al. [2016], with the help of sampling colorful points from the refer-
ence. Zhang et al. [2016] uses a class-rebalancing step to oversam-
ple more colorful portions of the gamut during training, but such
a solution sometimes results in overly aggressive colorization and
causes artifacts (e.g.the blue and orange colors in the 4th row of
Fig. 14). Our approach can control colorization and achieve de-
sired colors by simply giving different references, thus our results
are visually faithful to the reference colors.

In addition to quantitative and qualitative comparisons, we use
a perceptual metric to evaluate how compelling our colorization
looks to a human observer. We ran a real vs. fake two-alternative
forced-choice user study on Amazon Mechanical Turk (AMT)
across different learning-based methods. This is similar to the ap-
proach taken by Zhang et al. [2016]. Participants in the study were



Target Reference Welsh et al. [2002] Ironi et al. [2005] Bugeau et al. [2012] Gupta et al. [2012] Ours
Figure 13: Comparison results with example-based methods. Input images: Ironi et al. [2005] and Gupta et al. [2012].

shown a series of pairs of images. Each pair consisted of a ground-
truth color photo and a re-colorized version produced by either our
algorithm (randomly selected reference or Top-1 recommended ref-
erence) or a baseline [Iizuka et al. 2016; Larsson et al. 2016; Zhang
et al. 2016]. The two images were shown side-by-side in random-
ized order. For every pair, participants were asked to observe the
image pair for no more than 5 seconds and click on the photo they
believed was the most realistic as early as possible. All images were
shown with the resolution of 256 pixels on the short edge.

To guarantee all algorithms can be compared by the same ”turker”
populations, we included results from different algorithms in one
experimental session for each participant. Each session consisted
of 5 practice trials (excluded from subsequent analysis), followed
by 50 randomly selected test pairs (each algorithm contributed 10
pairs). During the practice trials, participants were given feedback
as to whether their answers were correct. No feedback was given
during the 50 test pairs. We conducted 5 different sessions to make
sure every algorithm covered all image pairs. The participants were
only allowed to complete at most one session. All experiment ses-
sions were posted simultaneously and a total of 125 participants
were involved in the user study (25±2 participants per session).

As shown in Table 3, our method with the Top-1 reference
(38.08%) and Zhang et al. [2016] (35.36%) respectively ranked 1st
and 2nd in the fooling rate. We felt that this may be partly because
participants preferred more colorful results to less saturated results
as shown in Fig. 15. Zhang et al. [2016] uses a class-rebalancing
step to encourage rare colors but at the expense of images which are
overly-aggressively colorized; while our method produces more vi-
brant colorization by utilizing correct color samples from the refer-
ence. Our method with random reference also degenerates to con-
servative color prediction since few reliable color samples can be

Table 3: Amazon Mechanical Turk real v.s. fake fooling rate. We
compared our method using an automatically recommended refer-
ence or a random intra-class reference with other learning-based
methods. Note that the best expectation of fooling rate should be
around 50%, which occurs when the user cannot distinguish real
from fake images and is forced to choose between two equally be-
lievable images. Input images: ImageNet dataset.

Method Fooling Rate (%)

Iizuka et al. [2016] 24.56 ± 1.76
Larsson et al. [2016] 24.64 ± 1.71
Zhang et al. [2016] 35.36 ± 1.52
Ours with random reference 21.92 ± 1.56
Ours with Top-1 reference 38.08 ± 1.72

used from the unrelated reference. This verifies that a good refer-
ence is important to high-quality colorization.

Fig. 16 provides a better sense of the participants’ competency at
detecting subtle errors made by our algorithm. The percentage on
the left shows how often participants think our colorized result is
more realistic than the ground truth. Some issues may come from
lack of colorization in some local regions (e.g., 0%, 11%), or poor
white balancing in the ground truth image (e.g., 22%, 32%). Sur-
prisingly, our results are considered more natural to human ob-
servers than the ground truth image in some cases (e.g.87%, 76%).



Target Ground truth Iizuka et al. [2016] Larsson et al. [2016] Zhang et al. [2016] Ours Reference

Figure 14: Comparison results with learning-based methods. Input images: ImageNet dataset.

Target Ground truth Ours (Top-1 ref) Zhang et al. [2017] Larsson et al. [2016] Iizuka et al. [2016] Ours (random ref)
(72%) (65%) (42%) (38%) (7%)

Figure 15: An example to show users preference on vibrant colorization. The numbers in brackets represent its fooling rates. Our colorized
results (3rd and last columns) are guided by the top-right references. Input images: ImageNet dataset.
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Figure 16: Examples from the user study. Results are generated
with our method with the Top-1 reference and are sorted by how
often the users chose our algorithm’s colorization over the ground
truth. Input images: ImageNet dataset.

6.4 Comparison with interactive-based methods

We compare our hybrid method with a different hybrid solu-
tion [Zhang et al. 2017] which combines user-guided scribbles (i.e.,
points) and deep learning. As shown in Fig. 17, by giving a proper
reference selected by the user, our method can achieve comparable
quality to theirs with dozens of user-given color points. Thus, our
method proposes a simple way to control the appearance of col-
orization generated with the help of deep neural networks.

Zhang et al. [2017] also present a variant of their method which
uses a global color histogram of a reference image as input to con-
trol colorization results. In Fig. 18, we show a comparison with
results by Zhang et al. [2017] using the global color histogram ei-
ther from the reference image (2nd column) or the aligned refer-
ence (3rd column). Their method provides a global control to alter
color distribution and average saturation but fails to achieve locally
variant colorization effects. Our method can preserve semantic cor-
respondence and locally map the reference color to the target (e.g.,
the plant colorized green and the flowerpot colorized in blue).

6.5 Colorization of legacy photographs and movies

Our system was trained on ”synthetic” grayscale images by remov-
ing the chrominance channels from color images. We tested our
system on legacy grayscale images, and show some selected results
in Fig. 19. Moreover, our method can be extended to colorize legacy
movies by independently colorizing each frame and then tempo-
rally smoothing the colorized results with the method of Bonneel et
al. [2015]. Some selected frames of a movie example are shown in
Fig. 20. Please refer to our supplemental material for a video demo.

7 Limitations and Conclusions

We have presented a novel colorization approach that employs a
deep learning architecture and a reference color image. Our ap-

Target Zhang et al. [2017] Ours Reference

Figure 17: Comparison results with the interactive-based method.
The points overlaid on the target are manually given and used
in Zhang et al. [2016], while the reference in the last column
is manually selected and used by our approach. Input images
(from left to right, top to bottom): Ansel Adams/wikipedia, Carina
Chen/pixabay, Dorothea Lange and Bess Hamiti/pixabay.

Target Zhang et al. [2017] Zhang et al. [2017] Ours
(Top-1 ref) (Top-1 aligned ref) (Top-1 ref)

Ground truth Zhang et al. [2017] Zhang et al. [2017] Ours
(Random ref) (Random aligned ref) (Random ref)

Figure 18: Comparison to Zhang et al. [2016] using global his-
togram hints from references overlaid on the the top-right corner.
The histogram used in Zhang et al. [2016] is either from the refer-
ence (2nd column) or from its aligned version generated by Liao et
al. [2017] (3rd column). Input images: ImageNet dataset.

proach is a general solution for exemplar-based colorization since
it yields plausible results even in cases where the target image does
not have clear correspondences in the reference. In such cases, it is
still capable of producing plausible and natural colors for the target
image. Unlike most deep-learning colorization frameworks, our ap-
proach allows us to control colorized results. Furthermore, with the
reference recommendation algorithm, the system also provides the
user with an automatic tool for re-coloring black-and-white pho-
tographs and movies. Our approach also suffers from some lim-
itations that can be addressed in future work. First, our network
cannot colorize objects with unusual or artistic colors, since it is
constrained by the learning from the proposed Perceptual branch,
as shown in the top row of Fig. 21. Second, the perceptual loss
based on the classification network (VGG) cannot penalize incor-
rect colors in regions with less semantic importance, such as the
wall in the second row of Fig. 21, or fails to distinguish less seman-
tic regions with similar local texture, such as the similar sand and
grass textures in the third row of Fig. 21. In addition, our result is
less faithful to the reference when there are dramatic luminance dis-
parities between images, as shown in the bottom row of Fig. 21. To
mitigate this limitation, our reference recommendation algorithm



Figure 19: Colorization of legacy pictures. In each set, the target grayscale photo is the upper-left, the reference is the lower-left and
our result lies on the right. Input images (from left to right, top to bottom, target to reference): George L. Andrews/wikipedia, Official
White House Photographer/wikimedia, Vandamm/wikimedia, Anonymous/wikimedia, Esther Bubley/wikimedia, Anonymous/wikimedia, Nick
Macneill/geograph, Bernd/pixabay, Oberholster Venita/pixabay, EU2017EE Estonian Presidency/wikimedia, Audrey Coey/flickr, EU2017EE
Estonian Presidency/wikimedia, Patrick Feller/wikimedia and Anonymous/pixabay.

Figure 20: Extending our method to video colorization. All black and white frames (top row) are independently colorized with the same
reference (leftmost column of bottom row) to generate colorized results (right 4 columns of bottom row). The input clip is from the film Anna
Lucasta (public domain) and the reference photo is by Heather Harvey/flickr.

enforces luminance similarity in the local ranking. Occasionally,
our method fails to predict colors for some local regions, as shown
in Fig. 16. It would be worthwhile to explore how to better balance
the two branches of our network.
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