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Explicit Filterbank Learning for Neural Image
Style Transfer and Image Processing
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Abstract—Image style transfer is to re-render the content of one image with the style of another. Most existing methods couple content
and style information in their network structures and hyper-parameters, and learn it as a black-box. For better understanding, this paper
aims to provide a new explicit decoupled perspective. Specifically, we propose StyleBank, which is composed of multiple convolution
filter banks and each filter bank explicitly represents one style. To transfer an image to a specific style, the corresponding filter bank is
operated on the intermediate feature produced by a single auto-encoder. The StyleBank and the auto-encoder are jointly learnt in such
a way that the auto-encoder does not encode any style information. This explicit representation also enables us to conduct incremental
learning to add a new style and fuse styles at not only the image level, but also the region level. Our method is the first style transfer
network that links back to traditional texton mapping methods, and provides new understanding on neural style transfer. We further
apply this general filterbank learning idea to two different multi-parameter image processing tasks: edge-aware image smoothing and
denoising. Experiments demonstrate that it can achieve comparable results to its single parameter setting counterparts.

Index Terms—Image Processing and Computer Vision, Style Transfer
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1 INTRODUCTION

S TYLE transfer is to migrate a style from an image to another,
and is closely related to texture synthesis. The core problem

behind these two tasks is both to model the statistics of a
reference image (texture, or style image), which enables further
sampling from it under certain constraints. For texture synthesis,
the constraints are that the boundaries between two neighboring
samples must have a smooth transition, while for style transfer, the
constraints are that the samples should match the local structure of
the content image. So in this sense, style transfer can be regarded
as a generalization of texture synthesis.

Recent work on style transfer adopting Convolutional Neural
Networks (CNN) ignited a renewed interest in this problem. On
the machine learning side, it has been shown that a pre-trained
image classifier can be used as a feature extractor to drive texture
synthesis [1] and style transfer [2]. These CNN algorithms either
apply an iterative optimization mechanism [2], [3], [4], or directly
learn a feed-forward generator network [5], [6], [7] to seek an
image close to both the content image and the style image –
all measured in the CNN (i.e., pre-trained VGG-16 [8]) feature
domain. These algorithms often produce more impressive results
compared to the traditional texture-synthesis based ones, since the
rich feature representation that a deep network can produce from
an image would allow more flexible manipulation of an image.

Notwithstanding their demonstrated success, the principles
of CNN style transfer are vaguely understood. After a careful
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examination of existing style transfer networks, we argue that the
content and style are still coupled in their learnt network structures
and hyper-parameters. To the best of our knowledge, an explicit
representation for either style or content has not yet been proposed
in existing neural style transfer methods. In addition, how to
further enable more flexibilities to control transfer (e.g. , region-
specific transfer), remain to be challenges yet to be addressed.

To explore an explicit representation for style, we reconsider
neural style transfer by linking back to traditional texton (known as
the basic element of texture) mapping methods, where mapping a
texton to the target location is equivalent to a convolution between
a texton and a Delta function (indicating sampling positions) in the
image space. However in these methods, simply stitching these
textons in the original image space often suffer from boundary
discontinuity artifacts. To alleviate this problem, some advanced
seamless stitching algorithms (e.g. , graphcut) need to be used.

Inspired by this, we propose StyleBank, which is composed
of multiple convolution filter banks and each filter bank learns to
represent one style. For the above second issue, we further adopt
feature space to do convolution rather than the original image
space, and use a following decoder to automatically learn to solve
the seamless stitching problem. Combining these two points, to
transfer an image to a specific style, the corresponding filter bank
is first convolved with the intermediate feature embedding pro-
duced by an encoder, which decomposes the original image into
multiple feature response maps. Then the transformed (convolved)
feature will be further fed into the following decoder to obtain
the final specific stylization result. This way, for the first time, we
provide a clear understanding of the mechanism underneath neural
style transfer.

To explicitly decouple the content and style, we further pro-
pose a new “T+1” training strategy to jointly train the StyleBank
and the auto-encoder (encoder+decoder) in an alternative way. Ex-
periments demonstrate that it not only allows us to simultaneously
learn a bundle of various styles, but also enables a very efficient
incremental learning for a new image style. This is achieved by
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learning a new filter bank while holding the auto-encoder fixed.
We believe this is a very useful functionality to recently emerged
style transfer mobile applications (e.g. , Prisma) since we do not
need to train and prepare a complete network for every style. More
importantly, it can even allow users to efficiently create their own
style models and conveniently share to others.

Since the part of our image encoding is shared for variant
styles, it may provide a faster and more convenient switch for users
between different style models. Because of the explicit represen-
tation, we can more conveniently control style transfer and create
new interesting style fusion effects. More specifically, we can
either linearly fuse different styles altogether, or produce region-
specific style fusion effects. In other words, we may produce an
artistic work with hybrid elements from van Gogh’s and Picaso’s
paintings. To better understand the underlying working principles,
we also use some visualization strategies to investigate what the
network learns and provide some new understandings.

Because the proposed filterbank learning algorithm is essen-
tially a natural and general way to achieve multiple functionalities
within one single network. We further apply this idea to two dif-
ferent multi-parameter image processing tasks: image smoothing,
and denoising. Since these types of operators often contain some
parameters to control the final results, some previous methods
often train multiple different models for each specific parameter
setting. By using the proposed filterbank learning idea, we can
also use different filter banks for different parameter settings
and enables multiple settings within one single network too.
Experiments demonstrate that it can achieve comparable results
to its single parameter setting counterparts.

To sum up, our contributions can be summarized in four-fold
as below:
• In our method, we provide an explicit representation for

styles. This enables our network to completely decouple
styles from the content after learning.

• Due to the explicit style representation, our method naturally
provides some flexibilities like region-based style transfer,
which is infeasible in existing neural style transfer networks.

• We have provided very detailed analysis of the working
principles of our style transfer network and linked it back
to some traditional texture synthesis methods, which may
inspire more research works in this field.

• The proposed filterbank learning idea is very general. We
have applied this idea to two different multi-parameter image
processing tasks, and achieved comparable performance to
their single parameter setting counterparts.

The remainder of the paper is organized as follows. We
summarize related work in Section 2. We devote Section 3 to
the main technical design of the proposed Style-Bank Network.
Section 4 discusses about new characteristics of the proposed
StyleBank network when compared with previous work. We
present experimental results and comparisons in Section 5. To
demonstrate the generality of our method, we further apply this
idea to two different image processing tasks in Section 6. And
finally we conclude in Section 7.

2 RELATED WORK

Style transfer is very related to texture synthesis, which attempts to
grow textures using non-parameteric sampling of pixels [9], [10]
or patches [11], [12] in a given source texture. The task of style
transfer can be regarded as a problem of texture transfer [11],

[13], [14], which synthesizes a texture from a source image
constrained by the content of a target image. Hertzman et al. [15]
further introduce the concept of image analogies, which transfer
the texture from an already stylised image onto a target image.
However, these methods only use low-level image features of the
target image to inform the texture transfer.

Ideally, style transfer algorithms should be able to extract
and represent the semantic image content from the target image
and then render the content in the style of the source image.
To generally separate content from style in natural images is
still an extremely difficult problem before, but the problem is
better mitigated by the recent development of Deep Convolutional
Neural Networks (CNN) [16].

DeepDream [17] may be the first attempt to generate artistic
work using CNN. Inspired by this work, Gatys et al. [2] suc-
cessfully apply CNN (pre-trained VGG-16 networks) to neural
style transfer and produces more impressive stylization results
compared to classic texture transfer methods. This idea is further
extended to portrait painting style transfer [18] and patch-based
style transfer by combining Markov Random Field (MRF) and
CNN [3]. In work [4], Liao et al. reformulate style transfer as
a special visual attribute transfer problem and propose a new
technique named “deep image analogy” to solve it. Unfortunately,
these methods based on an iterative optimization mechanism
are computationally expensive in run-time, which imposes a big
limitation in real applications.

To make the run-time more efficient, more and more works
begin to directly learn a feed-forward generator network for a
specific style. This way, stylized results can be obtained just
with a forward pass, which is hundreds of times faster than
iterative optimization[2]. For example, Ulyanov et al.[6] propose
a texture network for both texture synthesis and style transfer.
Johnson et al.[5] define a perceptual loss function to help learn
a transfer network that aims to produce results approaching [2].
Chuan et al. [7] introduce a Markovian Generative Adversarial
Networks, aiming to speed up their previous work [3]. However,
in all of these methods, the learnt feed-forward networks can only
represent one specific style. For a new style, the whole network
has to be retrained, which may limit the scalability of adding more
styles on demand.

Very recently, many following works are proposed to enable
multiple styles [19], [20], [21] or arbitrary styles [22], [23],
[24]. In multiple style transfer methods, they often use one-hot
vector [20] or different shifting/scaling parameters of instance
normalization layers [19] to represent different styles. While for
most arbitrary style transfer methods, they often use a pre-trained
VGG network and transform the content feature based on the
style feature statistics, then retrained a new decoder to decode
the transformed features back to the image space. Though these
methods can achieve quite good stylization results, they do not
provide an explicit and compact way to represent styles. Therefore,
the underlying working principles of these methods are still vague.
However, our method aims to decouple the content and style in an
explicit way.

At the core of our network, the proposed StyleBank represents
each style by a convolution filter bank. It is very analogous
to the concept of ”texton” [25], [26], [27] and filter bank in
[28], [29], but StyleBank is defined in feature embedding space
produced by auto-encoder [30] rather than image space. As we
known, embedding space can provide compact and descriptive
representation for original data [31], [32], [33]. Therefore, our
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Fig. 1. Our network architecture consists of three modules: image encoder E , StyleBank layer K and image decoder D

StyleBank would provide a better representation for style data
compared to predefined dictionaries (such as wavelet [34] or
pyramid [35] ).

3 STYLEBANK NETWORKS

3.1 StyleBank
At its core, the task of neural style transfer requires a more explicit
representation, like texton [25], [27] (known as the basic element
of texture) used in classical texture synthesis. It may provide a new
understanding for the style transfer task, and then help design a
more elegant architecture to resolve the coupling issue in existing
transfer networks [5], [6], which have to retrain hyper-parameters
of the whole network for each newly added style end-to-end.

We build a feed-forward network based on a simple image
auto-encoder (shown in Figure 1), which would first transform
the input image (i.e. , the content image) into the feature space
through the encoder subnetwork. Inspired by the texton concept,
we introduce StyleBank as style representation by analogy, which
is learnt from input styles.

Indeed, our StyleBank contains multiple convolution filter
banks. Every filter bank represents one kind of style, and all
channels in a filter bank can be regarded as bases of style ele-
ments (e.g. , texture pattern, coarsening or softening strokes). By
convolving with the intermediate feature maps of content image,
produced by auto-encoder, StyleBank would be mapped to the
content image to produce different stylization results. Actually,
this manner is analogy to texton mapping in image space, which
can also be interpreted as the convolution between texton and
Delta function (indicating sampling positions). The difference is
that we adopt this operation in the feature space but not the
image space. Because the following decoder can learn to solve the
seamless stitching problem, it can avoid boundary discontinuity
artifacts without the need of extra post processing.

3.2 Network Architecture
Figure 1 shows our network architecture, which consists of three
modules: image encoder E , StyleBank layer K and image decoder
D, which constitute two learning branches: auto-encoder (i.e. ,
E → D) and stylizing (i.e. , E → K → D). Both branches share
the same encoder E and decoder D modules.

Our network requires the content image I to be the input.
Then the image is transformed into multi-layer feature maps F
through the encoder E : F = E(I ). For the auto-encoder branch,
we train the auto-encoder to produce an image that is as close as
possible to the input image, i.e. , O = D(F )→ I . In parallel, for
the stylizing branch, we add an intermediate StyleBank layer K
between E and D. In this layer, StyleBank {Ki}, (i = 1, 2, ..., n),

TABLE 1
The default network configuration details.

Layer type channel number kernel size stride
Conv 32 9 × 9 1
Conv 64 3× 3 2
Conv 128 3× 3 2

Stylebank 128 3 × 3 1
Deconv 64 3 × 3 2
Deconv 32 3 × 3 2
Conv 3 9× 9 1

for n styles would be respectively convolved with features F to
obtain transferred features F̃i. Finally, the stylization result Oi for
style i is achieved by the decoder D: Oi = D(F̃i).

In this manner, contents could be encoded to the auto-encoder
E and D as much as possible, while styles would be encoded into
StyleBank. As a result, content and style are decoupled from our
network as much as possible.

Encoder and Decoder. Following the architecture used in [5],
the image encoder E consists of one stride-1 convolution layer
(channel number is 32) and two stride-2 convolution layers (chan-
nel numbers are 64 and 128 respectively) , symmetrically, the
image decoder D consists of two stride- 1

2 fractionally strided
convolution layers and one stride-1 convolution layer. All con-
volutional layers are followed by instance normalization [36]
and a ReLU nolinearity except the last output layer. Instance
normalization has been demonstrated to perform better than spatial
batch normalization [37] in handling boundary artifacts brought
by padding. Other than the first and last layers which use 9 × 9
kernels, all convolutional layers use 3 × 3 kernels. In our default
simplified version, we remove all the residual blocks used in the
network presented in [5] to reduce the model size and computation
cost. The detailed configuration parameters are shown in Table 1.

StyleBank Layer. Our architecture allows multiple styles (by
default, 50 styles, but there is really no limit on it) to be
simultaneously trained in the single network at the beginning.
In the StyleBank layer K, we learn n convolution filter banks
{Ki}, (i = 1, 2, ...n) (referred as StyleBank). During training,
we need to specify the i-th style, and use the corresponding filter
bank Ki for forward and backward propagation of gradients. At
this time, transferred features F̃i is achieved by

F̃i = Ki ⊗ F , (1)

where F ∈ Rcin×h×w, Ki ∈ Rcout×cin×kh×kw , F̃ ∈
Rcout×h×w, cin and cout are numbers of feature channels for F
and F̃ respectively, (h,w) is the feature map size, and (kw, kh)
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is the kernel size. To allow efficient training of new styles in our
network, we may reuse the encoder E and the decoder D in our
new training. We fix the trained E and D, and only retrain the
layer K with new filter banks starting from random initialization.

Loss Functions. Our network consists of two branches: auto-
encoder (i.e. , E → D) and stylizing (i.e. , E → K → D),
which are alternatively trained. Thus, we need to define two loss
functions respectively for the two branches.

In the auto-encoder branch, we use MSE (Mean Square Error)
between input image I and output image O to measure an identity
loss LI :

LI(I ,O) = ‖O − I ‖2. (2)

At the stylizing branch, we use perceptual loss LK proposed
in [5], which consists of a content loss Lc, a style loss Ls and a
variation regularization loss Ltv(Oi):

LK(I ,Si ,Oi) = αLc(Oi , I ) + βLs(Oi ,Si) + γLtv(Oi) (3)

where I , Si , Oi are the input content image, style image and
stylization result (for the i-th style) respectively. Ltv(Oi) is a
variation regularizer used in [38], [5]. Lc and Ls use the same
definition in [2]:

Lc(Oi , I ) =
∑

l∈{lc}
‖F l(Oi)− F l(I)‖2

Ls(Oi ,S ) =
∑

l∈{ls}
‖G(F l(Oi))−G(F l(Si))‖2

(4)

where F l and G are respectively feature map and Gram ma-
trix computed from layer l of pretrained VGG-16 network [8].
{lc}, {ls} are VGG-16 layers used to respectively compute the
content loss and the style loss.

Training Strategy. We employ a (T + 1)-step alternative training
strategy motivated by [39] in order to balance the two branches
(auto-encoder and stylizing). During training, for every T + 1
iterations, we first train T iterations on the branch with K, then
train one iteration for auto-encoder branch. We show the training
process in Algorithm 1.

Algorithm 1 Two branches training strategy. Here λ is the tradeoff
between two branches. ∆θK denote gradients of filter banks in
K. ∆KθE,D ,∆

I
θE,D

denote gradients of E ,D in stylizing and auto-
encoder branches respectively.

for every T + 1 iterations do
// Training at branch E → K → D:
for t = 1 to T do
• Sample m images X = {xi} and style indices
Y = {yi}, i ∈ {1, ...,m} as one mini-batch.
• Update E ,D and {Kj}, j ∈ Y :

∆KθE,D ←5θE,DLK
∆θK ←5θKLK

end for
// Training at branch E → D:
• Update E ,D only:

∆IθE,D ←5θE,DLI

∆IθE,D ← λ
‖∆K

θE,D
‖

‖∆I
θE,D

‖∆
I
θE,D

end for

Extension to Hierarchy Stylebank. In the above default simpli-
fied design, each style is only represented by one single filter bank.

DecoderEncoder E

… …

𝐾𝑖
1𝐾1

1 𝐾𝑛
1

𝐾𝑖
𝑚𝐾1

𝑚 𝐾𝑛
𝑚

… … …

Fig. 2. The overall network structure for the hierarchy stylebank design.

However, in traditional image processing field, images are often
decomposed in a hierarchy way (e.g., Gaussian Pyramid, Lapla-
cian Pyramid) and each hierarchy level represents one specific
level of image information. In fact, features extracted by existing
deep neural networks also follow a similar hierarchy way. Inspired
by this, we also try another hierarchy stylebank design as shown in
Figure 2. In this setting, each style will be represented by multiple
hierarchy filter banks (K 1

i , ...,K
m
i ). Correspondingly, we will

extract different levels of intermediate features (F 1, ...,Fm) ,

and obtain transferred feature F̃i
j

by convolving K j
i with F j ,

formally:

F̃ ji = K j
i ⊗ F j , j ∈ {1, ...,m} (5)

Note that in this setting, we add the removed five residual
blocks back into the auto-encoder network (three into encoder,
and two into decoder) to get more hierarchy features. By default,
we set m as 2, and regard the first 1/2 downsampled feature maps
and the 1/4 downsampled output feature of the encoder as F 1, F 2

respectively. The transferred feature F̃ 1
i is first concatenated with

the symmetric decoder feature then reduce its channel dimension
from 128 back to 64 by using an extra 1× 1 convolution layer.

3.3 Understanding StyleBank and Auto-encoder

For our new representation of styles, there are several questions
one might ask:

1) How does StyleBank represent styles?
After training the network, each style is encoded in one

convolution filter bank. Each channel of filter bank can be con-
sidered as dictionaries or bases in the literature of representation
learning method [40]. Different weighted combinations of these
filter channels can constitute various style elements, which would
be the basic elements extracted from the style image for style
synthesis. We may link them to “textons” in texture synthesis by
analogy.

For better understanding, we try to reconstruct style elements
from a learnt filter bank in an exemplar stylization image shown
in Figure 3. We extract two kinds of representative patches from
the stylization result (in Figure 3(b))– stroke patch (indicated by
red box) and texture patch (indicated by green box) as an object
to study. Then we apply two operations below to visualize what
style elements are learnt in these two kinds of patches.

First, we mask out other regions but only remain these
corresponding positions of the two patches in feature maps (as
shown in Figure 3(c)(d)), that would be convolved with the filter
bank (corresponding to a specific style). We further plot feature
responses in Figure 3(e) for the two patches along the dimension of
feature channels. As we can observe, their responses are actually
sparsely distributed and some peak responses occur at individual
channels. Then, we only consider non-zero feature channels for
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Fig. 3. Reconstruction of the style elements learnt from two kinds of representative patches in an exemplar stylization image.

(a) (b) (c) (d) (e) (f)

Fig. 4. Learnt style elements of different StyleBank kernel sizes. (b) and
(c) are stylization results of (3, 3) and (7, 7) kernels respectively. (d), (e)
and (f) respectively show learnt style elements, original style patches
and stylization patches.

Fig. 5. k-means clustering result of feature maps(left) and corresponding
stylization result(right).

convolution and their convolved channels of filter bank (marked by
green and red colors in Figure 3(f)) indeed contribute to a certain
style element. Transferred features are then passed to the decoder.
Recovery style elements are shown in Figure 3(g), which are very
close in appearance to the original style patches (Figure 3(i)) and
stylization patches (Figure 3(j)).

To further explore the effect of kernel size (kw, kh) in the
StyleBank, we set a comparison experiment to train our network
with two different kernel size of (3, 3) and (7, 7). Then we use
similar method to visualize the learnt filter banks, as shown in
Fig. 4. Here the green and red box indicate representative patches
from (3,3) and (7,7) kernels respectively. After comparison, it is
easy to observe that bigger style elements can be learnt with larger
kernel size. For example, in the bottom row , bigger sea spray
appears in the stylization result with (7,7) kernels. That suggests
our network supports the control on the style element size by
tuning parameters to better characterize the example style.

2) What is the content image encoded in?
In our method, the auto-encoder is learnt to decompose the

content image into multi-layer feature maps, which are indepen-
dent of any styles. When further analyzing these feature maps, we
have two observations.

channel index
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Fig. 6. Sparsity analysis. Top-left: means and standard deviations of
per-channel average response; top-right: distributions of sorted means
of per-channel average response for different model sizes (Cmax =
32, 64, 128); bottom: corresponding stylization results.

First, these features can be spatially grouped into meaningful
clusters in some sense (e.g. , colors, edges, textures). To verify
this point, we extract each feature vector at every position of
feature maps. Then, an unsupervised clustering (e.g. , K-means
algorithms) is applied to all feature vectors (based on L2 normal-
ized distance). Finally, we can obtain the clustering results shown
in left of Figure 5, which suggests a certain segmentation to the
content image.

Comparing the right stylization result with left clustering
results, we can easily find that different segmented regions are
indeed rendered with different kinds of colors or textures. For
regions with the same cluster label, the filled color or textures
are almost the same. As a result, our auto-encoder may enable
region-specific style transfer.

Second, these features would distribute sparsely in channels.
To exploit this point, we randomly sample 200 content images, and
for each image, we compute the average of all non-zero responses
at every of 128 feature channels (in the final layer of encoder).
And then we plot the means and standard deviations of those per-
channel averages among 200 images in the top-left of Figure 6.
As we can see, valuable responses consistently exist at certain
channels. One possible reason is that these channels correspond
to specific style elements for region-specific transfer, which is in
consistency with our observation in Figure 3(e).

The above sparsity property will drive us to consider smaller
model size of the network. We attempt to reduce all channel
numbers in our auto-encoder and StyleBank layer by a factor of
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(a) (b) (c)
Fig. 7. Illustration of the effects of two branches. The middle and right
ones are reconstructed input image (left) with and without auto-encoder
branch during training.

(a) (b) (c) (d) (e) (f)

Fig. 8. Stylization result of a toy image, which consists of four parts of
different color or different texture.

2 or 4. Then the maximum channel number Cmax become 64, 32
respectively from the original 128. We also compute and sort the
means of per-channel averages, as plotted in the top-right of Fig. 6.
We can observe that the final layer of our encoder still maintains
the sparsity even for smaller models although sparsity is decreased
in smaller models (Cmax = 32). On the bottom of Figure 6, we
show corresponding stylization results of Cmax = 32, 64, 128
respectively. By comparison, we can notice that Cmax = 32
obviously produces worse results than Cmax = 128 since the
latter may encourage better region decomposition for transfer.
Nevertheless, there may still be a potential to design a more
compact model for content and style representation.

3) How are content and style decoupled from each other?
To further know how well content is decoupled from style,

we need to examine if the image is completely encoded in the
auto-encoder. We compare two experiments with and without
the auto-encoder branch in our training. When we only consider
the stylizing branch, the decoded image (shown in the middle
of Figure 7) produced by solely auto-encoder without K fails
to reconstruct the original input image (shown in the left of
Figure 7), and instead seems to carry some style information.
When we enable the auto-encoder branch in training, we obtain
the final image (shown in the right of Figure 7) reconstructed
from the auto-encoder, which has very close appearance to the
input image. Consequently, the content is explicitly encoded into
the auto-encoder, and independent of any styles. This is very
convenient to carry multiple styles learning in a single network
and reduce the interferences among different styles.

4) How does the content image control style transfer?
To know how the content controls style transfer, we consider

a toy case shown in Figure 8. On the top, we show the input toy
image consisting of five regions with variant colors or textures. On
the bottom, we show the output stylization result. Below are some
interesting observations:

• For input regions with different colors but without textures,
only a purely color transfer is applied (see Figure 8 (b)(f)).

• For input regions with the same color but different textures,
the transfer consists of two parts: the same color transfer and

different texture transfer influenced by appearance of input
textures. (see Figure 8 (c)(d)).

• For input regions with different colors but the same textures,
the results have the same transferred textures but different
target colors (see Figure 8 (d)(e)).

5) How to visualize all the learned style elements?
In Section 3.3, we have provided one way to visualize the

learned style elements at one specific position. To further study
how many different style elements are learned for different styles,
we adopt a another simple but effective visualization way. Because
style transfer is essentially to convert content patches to style
elements, the network itself should have learned a set of style
elements for all different kinds of content patches. Therefore, to
visualize all the learned style elements, we use a noise image
to approximate the content patch distribution. Our hypothesis
is that it should be able to cover all the possible local patch
distributions as long as the noise sampling procedure is random
and comprehensive enough. Specifically, we feed one large noise
image (pixel values are uniformly sampled in [0, 255]) into the
network and see its corresponding stylization results.

In Figure 9, we provide the stylization results of two noise
images for two different styles. It can be seen that our network has
learned a set of representative style elements for each style. And
for different noise images, the learned style elements are overall
similar. This experiment also demonstrates that our method can be
potentially used for texture synthesis by feeding noise images.

4 CAPABILITIES OF OUR NETWORK

Because of the explicit representation mechanism, our proposed
feed-forward network also provides additional capabilities, which
may bring new user experiences and generate new stylization
effects.

4.1 Incremental Training
Some previous style transfer networks (e.g. , [5], [6], [3]) have
to be retrained for a new style, which is very inconvenient.
In contrast, an iterative optimization mechanism [2] provides
an online-learning for any new style, which would take several
minutes for one style on GPU (e.g. , Titan X). Our method has
virtues of both feed-forward networks [5], [6], [3] and iterative
optimization method [2]. We enable an incremental training for
new styles, which has comparable learning time to the online-
learning method [2], while preserving efficiency of feed-forward
networks [5], [6], [3].

In our configuration, we first jointly train the auto-encoder
and multiple filter banks (50 styles used at the beginning) with
the strategy described in Algorithm 1. After that, it allows to
incrementally augment and train the StyleBank layer for new styles
by fixing the auto-encoder. The process converges very fast since
only the augmented part of the StyleBank would be updated in
iterations instead of the whole network. In our experiments, when
training with Titan X and given training image size of 512, it only
takes around 8 minutes with about 1, 000 iterations to train a new
style, which can speed up the training time by 20 ∼ 40 times
compared with previous feed-forward methods.

Figure 10 shows several stylization results of new styles by
incremental training. It obtains very comparable stylization results
to those from fresh training, which retrains the whole network
with the new styles.
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style 1 stylization (noise 1) stylization (noise 2) style 2 stylization (noise 1) stylization (noise 2)

Fig. 9. To visualize the learned style elements, we feed different noise images into our network and get their corresponding stylization results. It
shows that they contain different types of style elements, and the recovered style elements of different noise images are overall similiar.

Fig. 10. Comparison between incremental training (Left) and fresh train-
ing (Right). The target styles are shown on the top-left.

Fig. 11. Results by linear combination of two style filter banks.

4.2 Style Fusion
We provide two different types of style fusion: linear fusion of
multiple styles, and region-specific style fusion.

Linear Fusion of Styles. Since different styles are encoded into
different filter banks {K1

i , ...,K
m
i }, we can linearly fuse multiple

styles by simply linearly fusing filter banks in the StyleBank layer.
Next, the fused filter bank is used to convolve with content features
{F 1, ...,Fm}:

F̃ j = (
∑n

i=1
wi ∗K j

i )⊗ F j
∑n

i=1
wi = 1, j ∈ {1, ...,m}

(6)
where m is the number of styles, K j

i is the filter bank of style i
at feature level j. F̃ j is then fed to the decoder. Figure 11 shows
such linear fusion results of two different styles with variant fusion
weight wi.

Region-specific Style Fusion. Our method naturally allows a
region-specific style transfer, in which different image regions
can be rendered by various styles. Suppose that the image is
decomposed into n disjoint regions by automatic clustering (e.g.
, K-means mentioned in Section 3.3 or advanced segmentation
algorithms [41], [42]) in our feature space, and Mi denotes every
region mask. The feature maps at level j can be described as

F j =
∑n
i=1(Mi × F j). Then region-specific style fusion can be

formulated as Equation (7):

F̃ j =
∑n

i=1
K j
i ⊗ (M j

i × F
j), j ∈ {1, ...,m} (7)

where K j
i is the i-th filter bank at level j.

Figure 12 shows such two region-specific style fusion results.
The left case borrows styles from two famous paintings of Picasso
and Van Goph, while the right two styles are both from Van
Goph. Superior to existing feed-forward networks, our method
naturally obtains image decomposition for transferring specific
styles, and passes the network only once. On the contrary, previous
approaches have to pass the network several times and finally
montage different styles via additional segmentation masks.

5 EXPERIMENTS

Training Details. Our network is trained on 1000 content images
randomly sampled from Microsoft COCO dataset [43] and 50
style images (from existing papers and the Internet). Each content
image is randomly cropped to 512 × 512, and each style image
is scaled to 600 on the long side. We train the network with a
batch size of 4 (m = 4 in Algorithm 1) for 300k iterations. And
the Adam optimization method [44] is adopted with the initial
learning rate of 0.01 and decayed by 0.8 at every 30k iterations. In
all of our experiments, we compute content loss at layer relu4 2
and style loss at layer relu1 2, relu2 2, relu3 2, and relu4 2
of the pre-trained VGG-16 network. We use T = 2, λ = 1 (in
Algorithm 1) in our two branches training.

5.1 Comparisons
Though the goal of this paper is to provide better understanding for
style transfer but not to achieve state-of-the-art stylization results,
we still compare our method with some existing CNN-based
style transfer approaches, including optimization based meth-
ods [2], Per-Style-Per-Model methods [5], [6], Multi-Style-Per-
Model methods [19], [20], [21] and Arbitrary-Style-Per-Model
methods [24], [22], [23]. For fair comparison, we directly borrow
results from their papers or run their release codes. Because it
is difficult to compare results with different abstract stylization,
which is indeed controlled by the ratio α/β in Equation (3)
and different work may use their own ratios to present results,
we choose different α, β in each comparison for comparable
perception quality. In the below comparison results, “-S” and “-
H” indicate the default single filterbank and hierarchy stylebank
setting respectively.

Compared with the Iterative Optimization Method. We use
α/β = 1/100 (in Equation (3)) to produce comparable perceptual
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Fig. 12. Region-specific style fusion results with two paintings. The left two paintings are from Picasso and Van Goph respectively, while the right
two are both from Van Goph. Here the regions are automatically segmented with K-means method.

Inputs Our Results-S Gatys 𝑒𝑡 𝑎𝑙.’s ResultsOur Results-H

Fig. 13. Comparison with optimization-based method [2].

Inputs Our Results-S Ulyanov 𝑒𝑡 𝑎𝑙.’s ResultsOur Results-H

Fig. 14. Comparison with the Per-Style-Per-Model method [6].

stylization in Fig. 13. Our method, like all other feed-forward
methods, creates less abstract stylization results than optimization
method [2]. It is still difficult to judge which one is more appealing
in practices. However, our method, like other feed-forward meth-
ods, could be hundreds of times faster than optimization-based
methods.

Compared with Per-Style-Per-Model methods. In Figure 14
and Figure 15, we respectively compare our results with two
Per-Style-Per-Model methods [5], [6]. We use α/β = 1/50
(in Equation (3)) in both comparisons. Ulyanov et al. [6] design
a shallow network specified for the texture synthesis task. When
it is applied to style transfer task, the stylization results are more
like texture transfer, sometimes randomly pasting textures to the
content image. Johnson et al. [5] use a much deeper network
and often obtain better results. Compared with both methods,
our results obviously present more region-based style transfer, for
instance, the portrait in Figure 14, and river/grass/forest in Fig. 15.

Compared with Multi-Style-Per-Model and Arbitrary-Style-

Inputs Our Results Texture Networks

Inputs Our Results-S Johnson 𝑒𝑡 𝑎𝑙.’s ResultsOur Results-H

Fig. 15. Comparison with the Per-Style-Per-Model method [5].

Per-Model methods. Very recently, many Multi-Style-Per-Model
and Arbitrary-Style-Per-Model methods have been proposed. For
the former type, existing methods often use one-hot vector [20]
or one-dimensional shifting/scaling parameters of instance nor-
malization layer [19] to indicate different styles and jointly train
them within one single network. For the latter type, most of
them directly transform the content features based on the first
and second statistics of style features, then retrain a decoder
to decode the transformed content features back to the image
space to get the stylization results. In this experiment, we will
compare our method with these two different types of methods
both qualitatively and quantitatively, including Multi-Style-Per-
Model methods [19], [20], [21] and Arbitrary-Style-Per-Model
methods [22], [23], [24].

In Figure 17, we directly use the trained models and ex-
ample images from [45] to generate the stylizations of these
baseline methods. It can be seen that the results of different
Multi-Style-Per-Model methods [20], [21] are often comparable
but may learn different style elements from one specific style
image. For Arbitrary-Style-Per-Model methods, though they can
handle arbitrary styles, their stylization results are often blurry
with distorted content structures and broken style elements. After
checking a large number of stylization results, we find our method
and Dumoulin et al.’s method [19] are slightly better, but our
results are more region-based. More importantly, compared to all
of these methods, instead of only enabling multiple or arbitrary
styles within one network, we aim to provide an explicit and
compact way to represent styles and understand the underlying
working principles more clearly.

Besides the above qualitative evaluation, we also conduct an
user study for evaluation. Specifically, we first select 10 content
images and 10 style images to generate total 100 stylization
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Content & Styles:

Fig. 16. Comparison results of hierarchy (third row) and single level
stylebank (second row). It shows that adopting hierarchy stylebank can
help to capture the style elements better.

TABLE 2
User study results of different stylization methods.“M” represents

Multi-Style-Per-Model methods and “A” represents
Arbitrary-Style-Per-Model methods. It shows that our method achieves

comparable good stylization results to method [19] and outperforms
other methods by a large margin.

Type method “best” ratio
M Dumounlin et al. [19] 41%
M Li et al. [20] 1%
M Zhang and Dana [21] 5%
M Our 44%
A Chen and Schimidt [22] 3%
A Huang and Belongie [23] 6%
A Li et al. [24] 0%

results, then ask 30 users (17 females and 13 males from 18 to
30 years old) to select the best method for each content-style
pair with the question “which stylization result is the best?”. As
shown in Table 2, our method and Dumoulin et al.’s method have
comparable “best” ratios, which are better than other methods.
Need to note that since participants are only allowed to choose
the best stylization results subjectively, there may exist some
uncertainties when the stylization results of some methods are
comparable. Besides, we find users are more inclined to choosing
the stylization results that look overall bright and colorful, which
may be not that fair if some methods like [21] capture the relatively
dark style elements even though they are all correct.

5.2 Results of Hierarchy Stylebank

In our default simplified design, each style is only represented by
one single level filter bank and this filter bank is only convolved
with the single level of content features. Compared to this single
level setting, the proposed hierarchy setting may be able to capture
the texture elements better. To verify this point, we also train
this hierarchy setting with the same style images set and compare
the final stylization results. In Figure 16, two example stylization
results are given. It can be seen that utilizing the hierarchy filter
bank is very helpful to capture different scales of texture elements
and produce better stylization results.

6 EXTENSION TO IMAGE PROCESSING TASKS

Though our method is motivated for style transfer task, the pro-
posed filterbank learning idea is essentially a natural and general
way to achieve multiple functionalities/tasks within one single
network. To demonstrate its generalization ability, we further
apply this idea to two different multi-parameter image processing
tasks: image smoothing, and denoising. In these two tasks, there
exist some parameters to control the final results (e.g., smoothness
degree, noise level) . With the development of deep learning, many
methods have used neural networks to accelerate or improve these
tasks. However, some of them still train multiple different models
for different parameter settings, which is both time-consuming
and storage-consuming. In the following part, we will try to use
different filter banks for different parameter settings and enables
multiple settings within one single network. Because we do not
need to decouple the content and style like the above style transfer
task, the auto-encoder branch is disabled in this experiment.

6.1 Image Smoothing
Image smoothing has been a very active and fundamental problem
in the computer vision field, which can be used for unwarranted
texture removal and image beautification in real applications. In
the past decades, a lot of edge-aware image smoothing algorithms
have been proposed, like L0 smoothing [46], RGF [47] and
RTV [48]. To obtain satisfactory results, these methods often
provide some hyper-parameters to tweak the final effects. Despite
of their impressive results, these methods are often based on
a time-consuming optimization procedure. To accelerate these
algorithms, some deep neural networks [49], [50] are proposed to
approximate them. However, some of these methods are designed
to approximate the effects of one specific hyper-parameter setting
or one specific algorithm. Therefore, for different parameter set-
tings or algorithms, multiple different models need to be retrained.

Considering that different smoothing algorithms or parameter
settings may share some common low-level or high-level image
statistics, we try to use different filter banks to represent different
algorithms and parameter settings. Without losing generality, we
consider three famous edge-aware smoothing algorithms (L0[46],
RGF[47], RTV[48]) and five parameter settings for each algorithm
in one single network, thus using total 15 filter banks.

By default, we directly use the backbone network structure
proposed in [51] but remove the weight learning sub network.
To support multiple algorithms/parameter settings, we try two
different filter bank settings: the default single filter bank setting
and the hierarchy filter bank setting. Following the same training
strategy as [49], [50], [51], we first use PASCAL VOC dataset [52]
to pre-generate the training image pairs by running the original
algorithms, then train the network with these image pairs in a
supervised way. The total image number is about 17k, and 500
images are randomly selected as the test set.

In Table 3, we first compare our method with the default
single algorithm and parameter setting baseline without the extra
filterbank layer (“baseline”). To further avoid the performance gain
from the extra parameters in the filterbank layer, we further test an-
other baseline (“baseline*”) with one filterbank layer but training
for one single setting. On one hand, it can be seen that using the
proposed filter bank learning idea can achieve slightly better or at
least very comparable performance to the single setting baseline
in terms of PSNR and SSIM. On the other hand, the hierarchy
filter bank is better than the single version. The underlying reason
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Content:

Style:

Dumoulin et
al. [19]:

Li et al. [20]:

Zhang and
Dana [21]:

Our-S:

Our-H:

Chen and
Schmidt [22]:

Huang and Be-
longie [23]:

Li et al. [24]:

Fig. 17. Some visual comparison results of different methods: the above four methods are Multi-Style-Per-Model based, while the below three are
Arbitrary-Style-Per-Model based methods. It can be seen that the results from Li et al. [20] and Zhang and Dana [21] often suffer from color drift
problems, and all Arbitrary-Style-Per-Model methods will generate broken and blurry texture elements. By comparison, we find that Dumoulin et
al.’s method [19] and our method can generate visually comparable results, but our results are more region-based.
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may be that hierarchy filter bank uses both low-level and high-
level image information, which is important for edge-aware image
smoothing algorithms. Some visual examples with running time
details are given in Figure 19, which further demonstrates that
our method is able to achieve very good smoothing effects for
different algorithms and hyper-parameters. Besides, compared to
the running time of obtaining the groundtruth results, our method
is significantly faster.

6.2 Image Denoising
Since the realistic image capturing environment is not perfect,
the captured images are often degraded with some noises. In the
past, many different image denoising algorithms are proposed by
leveraging some image priors [53], [54] or large-scale training
datasets [56], [55]. However, some of the deep neural networks
based methods [56], [55] still train one network for one specific
noise level. In this paper, though we also only consider additive
white Gaussian noise (AWGN), we use different filter banks to
represent different noise levels and train one single network for
multiple different noise levels.

Following the same training and evaluation strategy as previ-
ous methods, we consider gray image denoising of three different
noise levels (σ = 15, 25, 50) and evaluate the final performance
on the BSD68 dataset. To train the network, we also use the afore-
mentioned PASCAL VOC dataset to pre-generate three different
noise levels of image pairs.

Table 4 shows the detailed evaluation results on the BSD68
dataset. By using the proposed filter bank learning idea, our
method is not only able to handle three different noise levels within
one single network but also achieves very close results to the single
setting baselines (“baseline*” and “baseline” are with and without
the extra filterbank layer respectively). However, different from
the above edge-aware smoothing, the performance of “hierarchy
filter bank” is almost same as the ”single filter bank” version. The
possible underlying reason is that AWGN is relatively local and
does not require too much hierarchy image information, so the
single filter bank setting is enough. We also provide the results of
some previous state-of-the-art methods. Among them, BM3D [53]
and WNNM [54] are optimization based methods, while DCDP
[55] and DnCNN [56] are learning based methods. Surprisingly,
our method is even better than these four methods, which may
attribute to the better network structure.

We further show two visual comparison results in Figure 18.
These two examples are with noise level 25 and 50 respectively.
It shows that our method can produce good denoising results for
different noise levels, which are even better than some previous
state-of-the-art methods. Especially in the second example, we
can find that, though the ground texture is very similar as the noise
pattern, our method can still differentiate them well and preserve
the original ground texture while removing the noises.

7 DISCUSSION AND CONCLUSION

In this paper, we have proposed a novel explicit representation for
style and content, which can be well decoupled by our network.
The decoupling allows faster training (for multiple styles, and new
styles), and enables new interesting style fusion effects, like linear
and region-specific style transfer. More importantly, we provide
very detailed analysis and present a new interpretation to neutral
style transfer, which may inspire more understandings rather than
leave the network as a blackbox. To demonstrate the generalization

ability of the proposed idea in supporting multiple functionalities
within one single network, we further extend this idea to image
smoothing and image denoising task. Experiments demonstrate
that the proposed idea not only supports multiple algorithms or
parameter settings within one single network but also achieves
comparable results to their single parameter counterparts.

Though this is an extension of our preliminary work [57],
there are still some interesting problems for further investigation.
For example, the auto-encoder may integrate semantic segmen-
tation [58], [59] as additional supervision in the region decom-
position, which would help create more impressive region-specific
transfer. It is also interesting to incorporate the proposed technique
into video and stereoscopic applications [60], [61].
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TABLE 3
Quantitative comparison results of using the proposed filter bank learning idea for edge-aware smoothing task. Total 15 different settings ( three

different algorithms and five hyper-parameter settings for each algorithm) are tested, where each setting is represented with one filter bank. “our-s”
means the results of using single filter bank, while “our-h” means the results of using hierarchy filter banks. It can be seen that our method can
achieve slightly better or at least comparable results to the single parameter setting baseline and the hierarchy version is also better than the
single version. Here “baseline*” and “baseline” mean the results with and without the extra filterbank layer in baseline network respectively.

L0 RGF RTV

γ baseline baseline* our-s our-h γ baseline baseline* our-s our-h γ baseline baseline* our-s our-h

PSNR
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TABLE 4
Quantitative comparison results of using the proposed filter bank learning idea for the gray image denoising task on the BSD68 dataset. Three

different noise levels (σ = 15, 25, 50) are trained within one single network, where each noise level is represented with one filter bank. It shows that
our single filter bank (“our-s”) and hierarchy filter bank setting(“our-h”) can achieve almost same results with the single setting baseline, which are

even better than some state-of-the-art methods. Here “baseline*” and “baseline” mean the results with and without the extra filterbank layer in
baseline network respectively.
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Fig. 19. Visual results of using the proposed filter bank learning idea for edge-aware smoothing task. It shows that our method can achieve very
good smoothing effects for different algorithms and hyper-parameters while being much faster.


